×

zbMATH — the first resource for mathematics

Weak anchoring effects in smectic-\(A\) Fréedericksz transitions. (English) Zbl 1422.74043
Summary: In smectic-\(A\) (SmA) liquid crystals, rod-like molecules are organized into layers with their optical axis oriented along the normal to these layers. When subject to an external field and for a certain critical threshold, these layers can buckle into a new different configuration. Here, we consider SmA liquid crystals which are confined between two parallel plates aligned in the so-called bookshelf geometry and subject to an external magnetic field. By assuming that instability is induced by a uniform field, we investigate the influence of the anchoring strength on the critical threshold field and on the layers shape by a perturbative analysis to the equilibrium equations. Main differences with respect to the standard Fréedericksz transition of nematics are highlighted. The behavior of this threshold effect suggests a new way to measure geometrical and constitutive parameters of a SmA sample.
MSC:
74G60 Bifurcation and buckling
76A15 Liquid crystals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aursand, P.; Napoli, G.; Ridder, J., On the dynamics of the weak Freedericksz transition for nematic liquid crystals, Commun. Comput. Phys., 20, 1359-1380, (2016) · Zbl 1373.76010
[2] Bevilacqua, G.; Napoli, G., Reexamination of the Helfrich-Hurault effect in smectic-\(a\) liquid crystals, Phys. Rev. E, 72, 041708, (2005)
[3] Bevilacqua, G.; Napoli, G., Parity of the weak Fréedericksz transition, Eur. Phys. J. E, 35, 133, (2012)
[4] Clark, NA; Meyer, RB, Strain-induced instability of monodomain smectic \(a\) and cholesteric liquid crystals, Appl. Phys. Lett., 22, 493-494, (1973)
[5] Vita, R.; Stewart, IW, Influence of weak anchoring upon the alignment of smectic a liquid crystals with surface pretilt, J. Phys. Condens. Matter, 20, 335101, (2008)
[6] de Gennes, P., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Clarendon Press, Oxford (1993)
[7] Pascalis, R., Mechanically induced Helfrich-Hurault effect in a confined lamellar system with finite surface anchoring, Phys. Rev. E, 100, 012705, (2019)
[8] Deuling, H., Deformation of nematic liquid crystals in an electric field, Mol. Cryst. Liq. Cryst., 19, 123, (1972)
[9] Elias, F.; Flament, C.; Bacri, JC; Neveau, S., Macro-organized patterns in ferrofluid layer: experimental studies, J. Phys. I, 7, 711, (1997)
[10] Elston, SJ, Smectic-A Fréedericksz transition, Phy. Rev. E, 58, r1215-r1217, (1998)
[11] García-Cervera, CJ; Joo, S., Analytic description of layer undulations in smectic a liquid crystals, Arch. Ration. Mech. Anal., 203, 1-43, (2012) · Zbl 1318.76002
[12] Helfrich, W., Deformation of cholesteric liquid crystals with low threshold voltage, Appl. Phys. Lett., 17, 531-532, (1970)
[13] Hurault, J., Static distortions of a cholesteric planar structure induced by magnet ic or ac electric fields, J. Chem. Phys., 59, 2068-2075, (1973)
[14] Ishikawa, T.; Lavrentovich, OD, Undulations in a confined lamellar system with surface anchoring, Phys. Rev. E, 63, 030501, (2001)
[15] Kedney, PJ; Stewart, IW, The onset of layer deformations in non-chiral smectic C liquid crystals, ZAMP, 45, 882-898, (1994) · Zbl 0820.76009
[16] Mirantsev, LV, Dynamics of Helfrich-Hurault deformations in smectic-A liquid crystals, Eur. Phys. J. E, 38, 104, (2015)
[17] Napoli, G., Weak anchoring effects in electrically driven Freedericksz transitions, J. Phys. A Math. Gen., 39, 11-31, (2005) · Zbl 1083.76006
[18] Napoli, G., On smectic-A liquid crystals in an electrostatic field, IMA J. Appl. Math., 71, 34-46, (2006) · Zbl 1117.82328
[19] Napoli, G.; Nobili, A., Mechanically induced Helfrich-Hurault effect in lamellar systems, Phys. Rev. E, 80, 031710, (2009)
[20] Napoli, G.; Turzi, S., On the determination of nontrivial equilibrium configurations close to a bifurcation point, Comput. Math. Appl., 55, 299-306, (2008) · Zbl 1140.49031
[21] Onuki, A.; Fukuda, JI, Electric field effects and form birefringence in diblock copolymers, Macromolecules, 28, 8788, (1996)
[22] Poursamad, JB; Hallaji, T., Freedericksz transition in smectic-A liquid crystals doped by ferroelectric nanoparticles, Phys. B Condens. Matter, 504, 112-115, (2017)
[23] Rapini, A., Papoular., M.: Distortion d’une lamelle nématique sous champ magnétique. conditions d’angrage aux paroix. J. Phys. Colloque C4, p. 54 (1969)
[24] Ribotta, R.; Durand, G., Mechanical instabilities of smectic-A liquid crystals under dilatative or compressive stresses, J. Phys., 38, 179-203, (1977)
[25] Santangelo, CD; Kamien, RD, Curvature and topology in smectic-A liquid crystals, Proc. R. Soc. A Math. Phys. Eng. Sci., 461, 2911-2921, (2005) · Zbl 1186.82091
[26] Senyuk, BI; Smalyukh, II; Lavrentovich, OD, Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold, Phys. Rev. E, 74, 011712, (2006)
[27] Seul, M.; Wolfe, R., Evolution of disorder in magnetic stripe domains. I. Transverse instabilities and disclination unbinding in lamellar patterns, Phys. Rev. A, 46, 7519-7533, (1992)
[28] Shalaginov, AN; Hazelwood, LD; Sluckin, TJ, Dynamics of chevron structure formation, Phys. Rev. E, 58, 7455-7464, (1998)
[29] Siemianowski, S.; Brimicombe, P.; Jaradat, S.; Thompson, P.; Bras, W.; Gleeson, H., Reorientation mechanisms in smectic a liquid crystals, Liq. Cryst., 39, 1261-1275, (2012)
[30] Singer, SJ, Layer buckling in smectic-A liquid crystals and two-dimensional stripe phases, Phys. Rev. E, 48, 2796-2804, (1993)
[31] Stewart, IW, Layer undulations in finite samples of smectic-A liquid crystals subjected to uniform pressure and magnetic fields, Phys. Rev. E, 58, 5926-5933, (1998)
[32] Virga, E.G.: Variational Theories for Liquid Crystals. Chapman & Hall, London (1993) · Zbl 0814.49002
[33] Weinan, E., Nonlinear continuum theory of smectic-A liquid crystals, Arch. Ration. Mech. Anal., 137, 159-175, (1997) · Zbl 0891.76009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.