×

zbMATH — the first resource for mathematics

The inflation of viscoelastic balloons and hollow viscera. (English) Zbl 1407.74024
Summary: For the first time, the problem of the inflation of a nonlinear viscoelastic thick-walled spherical shell is considered. Specifically, the wall has quasilinear viscoelastic constitutive behaviour, which is of fundamental importance in a wide range of applications, particularly in the context of biological systems such as hollow viscera, including the lungs and bladder. Experiments are performed to demonstrate the efficacy of the model in fitting relaxation tests associated with the volumetric inflation of murine bladders. While the associated nonlinear elastic problem of inflation of a balloon has been studied extensively, there is a paucity of studies considering the equivalent nonlinear viscoelastic case. We show that, in contrast to the elastic scenario, the peak pressure associated with the inflation of a neo-Hookean balloon is not independent of the shear modulus of the medium. Moreover, a novel numerical technique is described in order to solve the nonlinear Volterra integral equation in space and time originating from the fundamental problem of inflation and deflation of a thick-walled nonlinear viscoelastic shell under imposed pressure.

MSC:
74D10 Nonlinear constitutive equations for materials with memory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ogden R. (1972) Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326, 565-584. (doi:10.1098/rspa.1972.0026) · Zbl 0257.73034
[2] Alexander H. (1971) Tensile instability of initially spherical balloons. Int. J. Eng. Sci. 9, 151-160. (doi:10.1016/0020-7225(71)90017-6)
[3] Hart-Smith L. (1966) Elasticity parameters for finite deformations of rubber-like materials. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 17, 608-626. (doi:10.1007/BF01597242)
[4] Beatty MF. (1987) Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Rev. 40, 1699-1734. (doi:10.1115/1.3149545)
[5] Adkins J, Rivlin R. (1952) Large elastic deformations of isotropic materials. IX. The deformation of thin shells. Phil. Trans. R. Soc. Lond. A 244, 505-531. (doi:10.1098/rsta.1952.0013) · Zbl 0048.18204
[6] Gent AN. (1999) Elastic instabilities of inflated rubber shells. Rubber Chem. Technol. 72, 263-268. (doi:10.5254/1.3538799)
[7] Amar MB, Goriely A. (2005) Growth and instability in elastic tissues. J. Mech. Phys. Solids 53, 2284-2319. (doi:10.1016/j.jmps.2005.04.008) · Zbl 1120.74336
[8] Goriely A. (2017) The mathematics and mechanics of biological growth. New York, NY: Springer. · Zbl 1398.92003
[9] Gleysteen JJ. (2016) A history of intragastric balloons. Surg. Obes. Relat. Dis. 12, 430-435. (doi:10.1016/j.soard.2015.10.074)
[10] Tate CM, Geliebter A. (2017) Intragastric balloon treatment for obesity: review of recent studies. Adv. Ther. 34, 1859-1875. (doi:10.1007/s12325-017-0562-3)
[11] US Food and Drug Administration. (2017)The FDA alerts health care providers about potential risks with fluid-filled intragastric balloons. See https://www.fda.gov. Online Letter, February 9.
[12] US Food and Drug Administration. (2017)Update: Potential risks with liquid-filled intragastric balloons—Letter to Health Care Providers. See https://www.fda.gov. Online Letter, August 10.
[13] Tate CM, Geliebter A. (2017) Intragastric balloon treatment for obesity: FDA safety updates. Adv. Ther. 35, 1-4. (doi:10.1007/s12325-017-0647-z)
[14] Kim SH, Chun HJ, Choi HS, Kim ES, Keum B, Jeen YT. (2016) Current status of intragastric balloon for obesity treatment. World J. Gastroenterol. 22, 5495-5504. (doi:10.3748/wjg.v22.i24.5495)
[15] Gerngross T, Xu Y, Pellegrino S. (2008) Viscoelastic behaviour of pumpkin balloons. Adv. Space Res. 42, 1683-1690. (doi:10.1016/j.asr.2007.03.093)
[16] Henderson J, Calderon G, Rand J. (1994)A nonlinear viscoelastic constitutive model for balloon films. In Proc. 32nd Aerospace Sciences Meeting and Exhibit, Reno, NV, 10-13 January 1994, p. 638. New York, NY: American Institute of Aeronautics and Astronautics.
[17] Osborne WA, Sutherland W. (1909) The elasticity of rubber balloons and hollow viscera. Proc. R. Soc. Lond. B 81, 485-499. (doi:10.1098/rspb.1909.0047)
[18] Mangan R, Destrade M. (2015) Gent models for the inflation of spherical balloons. Int. J. Non-Linear Mech. 68, 52-58. (doi:10.1016/j.ijnonlinmec.2014.05.016)
[19] Humphrey J, Canham P. (2000) Structure, mechanical properties, and mechanics of intracranial saccular aneurysms. J. Elast. Phys. Sci. Solids 61, 49-81. (doi:10.1023/A:1010989418250) · Zbl 0973.92016
[20] Humphrey JD, Na S. (2002) Elastodynamics and arterial wall stress. Ann. Biomed. Eng. 30, 509-523. (doi:10.1114/1.1467676)
[21] Kondo A, Susset JG. (1973) Physical properties of the urinary detrusor muscle: a mechanical model based upon the analysis of stress relaxation curve. J. Biomech. 6, 141-151. (doi:10.1016/0021-9290(73)90083-3)
[22] Korkmaz I, Rogg B. (2007) A simple fluid-mechanical model for the prediction of the stress-strain relation of the male urinary bladder. J. Biomech. 40, 663-668. (doi:10.1016/j.jbiomech.2006.02.014)
[23] Damaser MS, Lehman SL. (1995) The effect of urinary bladder shape on its mechanics during filling. J. Biomech. 28, 725-732. (doi:10.1016/0021-9290(94)00169-5)
[24] Schiebler TH, Schmidt WZK. (1995) Anatomie. Berlin, Germany: Springer.
[25] McGee GE, Clark TD. (2014) All puffed out: do pufferfish hold their breath while inflated? Biol. Lett. 10, 20140823. (doi:10.1098/rsbl.2014.0823)
[26] Brainerd EL. (1994) Pufferfish inflation: functional morphology of postcranial structures in Diodon holocanthus (Tetraodontiformes). J. Morphol. 220, 243-261. (doi:10.1002/jmor.1052200304)
[27] Kirti Khora SS. (2016) Mechanical properties of pufferfish (Lagocephalus gloveri) skin and its collagen arrangement. Marine Freshwater Behav. Physiol. 49, 327-336. (doi:10.1080/10236244.2016.1209363)
[28] De Pascalis R, Abrahams ID, Parnell WJ. (2013) Predicting the pressure-volume curve of an elastic microsphere composite. J. Mech. Phys. Solids 61, 1106-1123. (doi:10.1016/j.jmps.2012.11.005)
[29] Shunmugasamy VC, Pinisetty D, Gupta N. (2013) Viscoelastic properties of hollow glass particle filled vinyl ester matrix syntactic foams: effect of temperature and loading frequency. J. Mater. Sci. 48, 1685-1701. (doi:10.1007/s10853-012-6927-8)
[30] Cohen T, Molinari A. (2015) Dynamic cavitation and relaxation in incompressible nonlinear viscoelastic solids. Int. J. Solids Struct. 69, 544-552. (doi:10.1016/j.ijsolstr.2015.04.029)
[31] Zhu H, Muliana A, Rajagopal K. (2016) On the nonlinear viscoelastic deformations of composites with prestressed inclusions. Compos. Struct. 149, 279-291. (doi:10.1016/j.compstruct.2016.03.008)
[32] Ivansson SM. (2012) Anechoic coatings obtained from two- and three-dimensional monopole resonance diffraction gratings. J. Acoust. Soc. Am. 131, 2622-2637. (doi:10.1121/1.3689852)
[33] Duranteau M, Valier-Brasier T, Conoir JM, Wunenburger R. (2016) Random acoustic metamaterial with a subwavelength dipolar resonance. J. Acoust. Soc. Am. 139, 3341-3352. (doi:10.1121/1.4950727)
[34] Ba A, Kovalenko A, Aristégui C, Mondain-Monval O, Brunet T. (2017) Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials. Sci. Rep. 7, 40106. (doi:10.1038/srep40106)
[35] Rashid B, Destrade M, Gilchrist M. (2012) Mechanical characterization of brain tissue in compression at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 10, 23-38. (doi:10.1016/j.jmbbm.2012.01.022)
[36] Peña E, Calvo B, Martínez M, Doblaré M. (2007) An anisotropic visco-hyperelastic model for ligaments at finite strains. Formulation and computational aspects. Int. J. Solids Struct. 44, 760-778. (doi:10.1016/j.ijsolstr.2006.05.018) · Zbl 1176.74043
[37] Drapaca C, Tenti G, Rohlf K, Sivaloganathan S. (2006) A quasi-linear viscoelastic constitutive equation for the brain: application to hydrocephalus. J. Elast. 85, 65-83. (doi:10.1007/s10659-006-9071-3) · Zbl 1098.74040
[38] Provenzano P, Lakes R, Corr D, Vanderby R. (2002) Application of nonlinear viscoelastic models to describe ligament behavior. Biomech. Model. Mechanobiol. 1, 45-57. (doi:10.1007/s10237-002-0004-1)
[39] Johnson G, Livesay G, Woo S, Rajagopal K. (1996) A single integral finite strain viscoelastic model of ligaments and tendons. J. Biomech. Eng. 118, 221-226. (doi:10.1115/1.2795963)
[40] Simo J. (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153-173. (doi:10.1016/0045-7825(87)90107-1) · Zbl 0588.73082
[41] AbuAl-Rub R, Tehrani A, Darabi M. (2014) Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites. Int. J. Damage Mech. 24, 198-244. (doi:10.1177/1056789514527020)
[42] Wineman A. (1978) Bifurcation of response of a nonlinear viscoelastic spherical membrane. Int. J. Solids Struct. 14, 197-212. (doi:10.1016/0020-7683(78)90025-2) · Zbl 0372.73073
[43] Calderer C. (1983) The dynamical behaviour of nonlinear elastic spherical shells. J. Elast. 13, 17-47. (doi:10.1007/BF00041312) · Zbl 0514.73104
[44] Ball JM. (1978)Finite time blow-up in nonlinear problems. In Nonlinear evolution equations (ed. MG Crandall), pp. 189-205. New York, NY: Academic Press.
[45] Calderer M. (1986) Radial motions of viscoelastic shells. J. Differ. Equ. 63, 289-305. (doi:10.1016/0022-0396(86)90058-6) · Zbl 0598.73098
[46] Calderer MC, Hsiao G. (1987) Finite time blow-up and stability properties of materials with fading memory. Math. Methods Appl. Sci. 9, 13-34. (doi:10.1002/mma.1670090103) · Zbl 0699.73031
[47] De Pascalis R, Abrahams ID, Parnell WJ. (2014) On nonlinear viscoelastic deformations: a reappraisal of Fung’s quasi-linear viscoelastic model. Proc. R. Soc. A 470, 20140058. (doi:10.1098/rspa.2014.0058)
[48] Wineman A. (2009) Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14, 300-366. (doi:10.1177/1081286509103660) · Zbl 1197.74021
[49] Pipkin A, Rogers T. (1968) A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16, 59-72. (doi:10.1016/0022-5096(68)90016-1) · Zbl 0158.43601
[50] Fung YC. (1981) Biomechanics: mechanical properties of living tissues. New York, NY: Springer.
[51] Wineman AS. (1972) Large axially symmetric stretching of a nonlinear viscoelastic membrane. Int. J. Solids Struct. 8, 775-790. (doi:10.1016/0020-7683(72)90042-X) · Zbl 0263.73045
[52] Wineman A. (2007) Nonlinear viscoelastic membranes. Comput. Math. Appl. 53, 168-181. (doi:10.1016/j.camwa.2006.02.017) · Zbl 1129.74025
[53] De Pascalis R, Abrahams ID, Parnell WJ. (2015) Simple shear of a compressible quasilinear viscoelastic material. Int. J. Eng. Sci. 88, 64-72. (doi:10.1016/j.ijengsci.2014.11.011) · Zbl 1423.74184
[54] Zhi Y, Muliana A, Rajagopal K. (2017) Quasi-linear viscoelastic modeling of light-activated shape memory polymers. J. Intell. Mater. Syst. Struct. 28, 2500-2515. (doi:10.1177/1045389x17689936)
[55] Carroll M. (1967) Controllable deformations of incompressible simple materials. Int. J. Eng. Sci. 5, 515-525. (doi:10.1016/0020-7225(67)90038-9)
[56] Carroll M. (1968) Finite deformations of incompressible simple solids I. Isotropic solids. Quart. J. Mech. Appl. Math. 21, 147-170. (doi:10.1093/qjmam/21.2.147) · Zbl 0159.27505
[57] Pucci E, Saccomandi G. (1999) Universal motions for constrained simple materials. Int. J. Non-Linear Mech. 34, 469-484. (doi:10.1016/S0020-7462(98)00033-X) · Zbl 1342.74020
[58] Truesdell C, Noll W. (1992) The nonlinear field theories of mechanics, 2nd edn. Berlin, Germany: Springer. · Zbl 0779.73004
[59] Saccomandi G. (2001)Universal results in finite elasticity. In Nonlinear elasticity: theory and applications. London Math. Soc. Lecture Note Ser., vol. 283, pp. 97-134. Cambridge, UK: Cambridge University Press. · Zbl 0993.74009
[60] Destrade M, Saccomandi G, Sgura I. (2017) Methodical fitting for mathematical models of rubber-like materials. Proc. R. Soc. A 473, 20160811. (doi:10.1098/rspa.2016.0811) · Zbl 1404.74016
[61] Dimitrov DS, Georgiev GA, Stoicheva NG, Traykov TT. (1982) Dynamics of viscoelastic spherical membranes—the balloon model of the alveolus. J. Theor. Biol. 96, 517-532. (doi:10.1016/0022-5193(82)90228-4)
[62] Kanner LM, Horgan CO. (2007) Elastic instabilities for strain-stiffening rubber-like spherical and cylindrical thin shells under inflation. Int. J. Non-Linear Mech. 42, 204-215. (doi:10.1016/j.ijnonlinmec.2006.10.010)
[63] Abramowitz M, Stegun IA. (1970) Handbook of mathematical function with formulas, graphs, and mathematical tables, vol.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.