zbMATH — the first resource for mathematics

Comparative study of quantum anharmonic potentials. (English) Zbl 1209.81117
Summary: We perform a study of various anharmonic potentials using a recently developed method. We calculate both the wave functions and the energy eigenvalues for the ground and first excited states of the quartic, sextic and octic potentials with high precision, comparing the results with other techniques available in the literature.

81Q15 Perturbation theories for operators and differential equations in quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
Full Text: DOI
[1] ()
[2] Hatsuda, T.; Kunihiro, T.; Tanaka, T., Phys. rev. lett., 78, 3229, (1997)
[3] Bender, C.M.; Bettencourt, L.M.A., Phys. rev. D, 54, 7710, (1996)
[4] Guida, R.; Konishi, K.; Suzuki, H., Ann. phys. (N.Y.), 241, 152, (1995)
[5] Janke, W.; Kleinert, H., Phys. rev. lett., 75, 2787, (1995)
[6] Yukalov, V.I.; Yukalov, V.I.; Yukalov, V.I., Phys. rev. A, J. math. phys., Teor. mat. fiz., 28, 92, (1976)
[7] Okopińska, A., Phys. rev. D, 35, 1835, (1987)
[8] Duncan, A.; Moshe, M., Phys. lett. B, 215, 352, (1988)
[9] Stevenson, P.M., Phys. rev. D, 23, 2916, (1981)
[10] Amore, P.; Aranda, A.; De Pace, A., J. phys. A, 37, 3515, (2004) · Zbl 1044.81026
[11] Pathak, A.; Mandal, S., Phys. lett. A, 298, 259, (2002)
[12] Meurice, Y.
[13] Meissner, H.; Steinborn, O., Phys. rev. A, 56, 1189, (1997)
[14] Bellet, B.; Garcia, P.; Neveu, A., Int. J. mod. phys. A, 11, 5587, (1996)
[15] Kleinert, H.; Janke, W., Phys. lett. A, 206, 283, (1995) · Zbl 1020.81577
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.