×

On the \(K\)-theoretic classification of dynamically stable systems. (English) Zbl 1415.16009

Summary: This paper deals with the construction of a suitable topological \(K\)-theory capable of classifying topological phases of dynamically stable systems described by gapped \(\eta\)-self-adjoint operators on a Krein space with indefinite metric \(\eta\).

MSC:

16E20 Grothendieck groups, \(K\)-theory, etc.
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
19K99 \(K\)-theory and operator algebras
46L80 \(K\)-theory and operator algebras (including cyclic theory)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alù, A. and Engheta, N., Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency, IEEE Trans. Antennas Propag.51 (2003) 2558-2571.
[2] Ando, Y. and Fu, L., Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Cond. Matt. Phys.6 (2015) 361-381.
[3] Azizov, T. Ya. and Iokhvidov, I. S., Linear Operators in Spaces with an Indefinite Metric (John Wiley & Sons Inc., Chichester, 1989). · Zbl 0714.47028
[4] Albeverio, S. and Kuzhel, S., Pseudo-hermiticityand theory of singular perturbations, Lett. Math. Phys.67 (2004) 223-238. · Zbl 1067.47017
[5] Albeverio, S. and Kuzhel, S., \( \mathcal{P} \mathcal{T} \)-symmetric operators in quantum mechanics: Krein spaces methods, in Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, eds. Bagarello, F., Gazeau, J. P., Szafraniec, F. H. and Znojil, M. (Wiley & Sons Inc, 2015), pp. 293-343.
[6] Atiyah, M. F. and Segal, G., Twisted \(K\)-theory, Ukr. Mat. Visn.1 (2004) 287-330. · Zbl 1151.55301
[7] Atiyah, M. F. and Singer, I. M., Index theory for skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math.37 (1969) 5-26. · Zbl 0194.55503
[8] Atiyah, M. F., \(K\)-Theory and reality, Quart. J. Math. Oxford Ser. (2)17 (1966) 367-386. · Zbl 0146.19101
[9] Atiyah, M. F., \(K\)-Theory (W. A. Benjamin, New York, 1967).
[10] Atiyah, M. F., Algebraic topology and operators in Hilbert space, in Lectures in Modern Analysis and Applications. I, Vol. 103 (Springer, Berlin, 1969), pp. 101-121.
[11] Atkinson, F. V., The normal solvability of linear equations in normed spaces, Mat. Sb.28 (1951) 3-14. · Zbl 0042.12001
[12] Altland, A. and Zirnbauer, M., Non-standard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B55 (1997) 1142-1161.
[13] Bender, C. M. and Boettcher, S., Real spectra in non-Hermitian Hamiltonians having \(\mathcal{P} \mathcal{T}\) symmetry, Phys. Rev. Lett.80 (1998) 5243. · Zbl 0947.81018
[14] Bender, C. M., Brody, D. C. and Jones, H. J., Complex extension of quantum mechanics, Phys. Rev. Lett.89 (2002) 270401. · Zbl 1267.81234
[15] Bender, C. M., Brody, D. C. and Jones, H. F., Must a Hamiltonian be Hermitian?Amer. J. Phys.71 (2003) 1905-1102. · Zbl 1219.81125
[16] Bender, C. M., Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys.70 (2007) 947-1018.
[17] Bender, C. M., \( \mathcal{P} \mathcal{T} \)-symmetric quantum theory, J. Phys.: Conf. Ser.631 (2015) 012002.
[18] Bender, C. M., \( \mathcal{P} \mathcal{T} \)-symmetry in quantum physics: From a mathematical curiosity to optical experiments, Euro. News47 (2016) 17-20.
[19] Bracci, L., Morchio, G. and Strocchi, F., Wigner’s theorem on symmetries in indefinite metric spaces, Comm. Math. Phys.41 (1975) 289-299. · Zbl 0303.46022
[20] Bognár, J., Indefinite Inner Product Spaces (Springer-Verlag, Berlin, 1974). · Zbl 0277.47024
[21] Brown, K. S., Cohomology of Groups (Springer-Verlag, Berlin, 1982). · Zbl 0584.20036
[22] Birman, M. Sh. and Solomyak, M. Z., \(L_2\)-theory of the Maxwell operator in arbitrary domains, Russ. Math. Surv.42 (1987) 75-96. · Zbl 0653.35075
[23] Buckholtz, D., Hilbert space idempotents and involutions, Proc. Amer. Math. Soc.128 (2000) 1415-1418. · Zbl 0955.46015
[24] Chtchelkatchev, N. M., Golubov, A. A., Baturina, T. I. and Vinokur, V. M., Stimulation of the fluctuation superconductivity by \(\mathcal{P} \mathcal{T} \)-symmetry, Phys. Rev. Lett.109 (2012) 1504058.
[25] Ćurgus, B. and Najman, B., The operator \((\text{sgn} x) \text{d}^2 / \text{d} x^2\) is similar to a selfadjoint operator in \(L^2(\mathbb{R})\), Proc. Amer. Math. Soc.123 (1995) 1125-1128. · Zbl 0835.47021
[26] Croke, S., \( \mathcal{P} \mathcal{T} \)-symmetric Hamiltonians and their application in quantum information, Phys. Rev. A91 (2015) 052113.
[27] Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. and Ryu, S., Classification of topological quantum matter with symmetries, Rev. Mod. Phys.88 (2016) 035005.
[28] Dixmier, J. and Douady, A., Champs continus d’espaces hilbertiennes et de \(C^\ast \)-algèbres, Bull. Sot. Muth. France91 (1963) 227-284. · Zbl 0127.33102
[29] Dorey, P., Dunning, C. and Tateo, R., Spectral equivalences, Bethe Ansatz equations, and reality properties in \(\mathcal{P} \mathcal{T} \)-symmetric quantum mechanics, J. Phys. A32 (2001) 5679-5703. · Zbl 0982.81021
[30] De Nittis, G. and Gomi, K., Classification of “real” Bloch-bundles: Topological quantum systems of type AI, J. Geom. Phys.86 (2014) 303-338. · Zbl 1316.57019
[31] De Nittis, G. and Gomi, K., Differential geometric invariants for time-reversal symmetric Bloch-bundles: The “real” case, J. Math. Phys.57 (2016) 053506. · Zbl 1346.57024
[32] Dirac, P. M. A., The physical interpretation of quantum mechanics, Proc. R. Soc. London A180 (1942) 1-40. · Zbl 0060.45501
[33] Donovan, D. and Karoubi, M., Graded Brauer groups and \(K\)-theory with local coefficients, Inst. Hautes Études Sci. Publ. Math.38 (1970) 5-25. · Zbl 0207.22003
[34] De Nittis, G. and Lein, M., The perturbed maxwell operator as pseudodifferential operator, Doc. Math.19 (2014) 63-101. · Zbl 1333.35259
[35] De Nittis, G. and Lein, M., Effective light dynamics in perturbed photonic crystals, Comm. Math. Phys.332 (2014) 221-260. · Zbl 1314.35182
[36] De Nittis, G. and Lein, M., The Schrödinger formalism of electromagnetism and other classical waves: How to make quantum-wave analogies rigorous, Ann. Phys.396 (2018) 579-617. · Zbl 1398.35227
[37] Dupré, M. J., Classifying Hilbert bundles, J. Funct. Anal.15 (1974) 244-278. · Zbl 0275.46050
[38] Dupont, J. L., Symplectic bundles and \(K R\)-theory, Math. Scand.24 (1969) 27-30. · Zbl 0184.48401
[39] El-Ganainy, R., Makris, K., Christodoulides, D. N. and Musslimani, Z., Theory of coupled optical \(\mathcal{P} \mathcal{T} \)-symmetric structures, Opt. Lett.32 (2007) 2632-2634.
[40] Esaki, K., Sato, M., Hasebe, K. and Kohmoto, M., Edge states and topological phases in non-Hermitian systems, Phys. Rev. B84 (2011) 205128. · Zbl 1254.81043
[41] Espinoza, J. and Uribe, B., Topological properties of the unitary group, JP J. Geom. Topol.16 (2014) 45-55. · Zbl 1439.47029
[42] Freed, D. S., Hopkins, M. J. and Teleman, C., Loop groups and twisted \(K\)-theory, I, J. Topol.4 (2011) 737-798. · Zbl 1241.19002
[43] Freed, D. S. and Moore, G. W., Twisted equivariant matter, Ann. Henri Poincaré14 (2013) 1927-2023. · Zbl 1286.81109
[44] Fredkin, D. R. and Ron, A., Effectively left-handed (negative index) composite material, Appl. Phys. Lett.81 (2002) 1753-1755.
[45] Gheondea, A., Canonical forms of unbounded unitary operators in Krein spaces, Publ. RIMS, Kyoto Univ.24 (1988) 205-224. · Zbl 0664.47027
[46] Ghosh, P. K., A note on the topological insulator phase in non-Hermitian quantum systems, J. Phys.: Condens. Matter24 (2012) 145302.
[47] Ginzburg, Yu. P. and Iokhvidov, I. S., The geometry of infinite-dimensional spaces with a bilinear metric, Russian Math. Surveys17 (1962) 1-51.
[48] K. Gomi, Freed-Moore \(K\)-theory (2017), arXiv:1705.09134.
[49] Galda, A. and Vinokur, V. M., Parity-time symmetry breaking in magnetic systems, Phys. Rev. B94 (2016) 020408.
[50] Hu, Y. C. and Hughes, T. L., Absence of topological insulator phases in non-Hermitian \(\mathcal{P} \mathcal{T} \)-symmetric Hamiltonians, Phys. Rev. B84 (2011) 153101.
[51] Hasan, M. Z. and Kane, C. L., Colloquium: Topological insulators, Rev. Mod. Phys.82 (2010) 3045-3067.
[52] Husemoller, D., Fibre Bundles (Springer-Verlag, New York, 1994).
[53] Iokhvidov, I. S. and Krein, M. G., Spectral theory of operators in the spaces with indefinite metric I, Trudy Mosk. Mat. Obshch.5 (1956) 367-432. · Zbl 0072.13401
[54] Iokhvidov, I. S. and Krein, M. G., Spectral theory of operators in the spaces with indefinite metric II, Trudy Mosk. Mat. Obshch.8 (1959) 413-496. · Zbl 0090.33201
[55] Jiang, H. T., Chen, H., Li, H. Q., Zhang, Y. W., Zi, J. and Zhu, S. Y., Properties of one-dimensional photonic crystals containing single-negative materials, Phys. Rev. E69 (2004) 066607.
[56] Jones, H. F., On pseudo-Hermitian Hamiltonians and their Hermitian counterparts, J. Phys. A38 (2005) 1741-1746. · Zbl 1069.81018
[57] Karoubi, M., \(K\)-Theory. An Introduction (Springer-Verlag, Berlin-New York, 1978). · Zbl 0382.55002
[58] Kato, T., Scattering theory with two Hilbert spaces, J. Funct. Anal.1 (1967) 342-369. · Zbl 0171.12303
[59] Kitaev, A., Periodic table for topological insulators and superconductors, AIP Conf. Proc.1134 (2009) 22-30. · Zbl 1180.82221
[60] Krein, M. G. and Langer, H., Spectral function of a self-adjoint operator in a space with indefinite metric, Dokl. Akad. Nauk SSSR152 (1963) 15-92.
[61] Kadison, R. V. and Ringrose, J. R., Fundamentals of the Theory of Operator Algebras I, , Vol. 15 (Academic Press Inc., Boston, 1983). · Zbl 0518.46046
[62] Krein, M. G., Introduction to the geometry of indefinite \(J\)-spaces and the theory of operators in those spaces, in Second Math. Summer School, Part I (Naukoav Dumka Kiev, 1965), pp. 15-92.
[63] Kissin, E. and Shulman, V., Representations on Krein Spaces and Derivations of \(C^\ast \)-Algebras (Addison Wesley Longman, London, 1997). · Zbl 0965.46009
[64] Kuzhel, S. and Sudilovskaya, V., Towards theory of \(\mathcal{C} \)-symmetries, Opuscula Math.37 (2017) 65-80. · Zbl 1373.47041
[65] Kellendonk, J., On the \(C^\ast \)-algebraic approach to topological phases for insulators, Ann. Henri Poincaré18 (2017) 2251-2300. · Zbl 1382.82045
[66] Kubota, Y., Controlled topological phases and bulk-edge correspondence, Comm. Math. Phys.349 (2017) 493-525. · Zbl 1357.82013
[67] Kuchment, P., Floquet Theory for Partial Differential Equations (Birkhäuser, Boston, 1993). · Zbl 0789.35002
[68] Kuiper, N. H., The homotopy type of the unitary group of Hilbert space, Topology3 (1965) 19-30. · Zbl 0129.38901
[69] Kuzhel, S., On pseudo-Hermitian operators with generalized \(\mathcal{C} \)-symmetries, in Modern Analysis and Applications. The Mark Krein Centenary Conference. Vol. 1: Operator Theory and Related Topics, , Vol. 190 (Birkhäuser/Verlag, 2009), pp. 375-385. · Zbl 1194.47018
[70] Ke, S., Wang, B., Long, H., Wang, K. and Lu, P., Topological edge modes in non-Hermitian plasmonic waveguide arrays, Opt. Express25 (2017) 11132-11143.
[71] Konotop, V. V., Yang, J. and Zezyulin, D. A., Nonlinear waves in \(\mathcal{P} \mathcal{T} \)-symmetric systems, Rev. Mod. Phys.88 (2016) 035002.
[72] Langer, H., Zur spektraltheorie \(J\)-selbstadjungierter operatoren, Math. Ann.146 (1962) 60-85. · Zbl 0119.32003
[73] Langer, H., Spectral functions of definitizable operators in Krein spaces, in Functional Analysis (Dubrovnik, 1981), , Vol. 948 (Springer, 1982, pp. 1-46.
[74] Lee, H. C., On clifford algebras and their representations, Ann. of Math.4 (1948) 760-773. · Zbl 0032.25302
[75] Lieu, S., Topological phases in the non-Hermitian Su-Schrieffer-Heeger model, Phys. Rev. B97 (2018) 045106.
[76] Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. D. and Nori, F., Edge modes, degeneracies, and topological numbers in non-Hermitian systems, Phys. Rev. Lett.118 (2017) 040401.
[77] Lee, J. M., Kottos, T. and Shapiro, B., Macroscopic magnetic structures with balanced gain and loss, Phys. Rev. B91 (2015) 094416.
[78] Mostafazadeh, A., Pseudo-Hermiticity versus \(\mathcal{P} \mathcal{T} \)-symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys.43 (2002) 205-214. · Zbl 1059.81070
[79] Mostafazadeh, A., Exact \(\mathcal{P} \mathcal{T} \)-symmetry is equivalent to Hermiticity, J. Phys. A36 (2003) 7081-7091. · Zbl 1048.81041
[80] Mostafazadeh, A., Is pseudo-Hermitian quantum mechanics an indefinite-metric quantum theory?Czech J. Phys.53 (2003) 1079-1084.
[81] Mostafazadeh, A., Krein-space formulation of \(\mathcal{P} \mathcal{T} \)-symmetry, \( \mathcal{C} \mathcal{P} \mathcal{T} \)-inner products, and pseudo-Hermiticity, Czech J. Phys.56 (2006) 919-933. · Zbl 1118.81030
[82] Mostafazadeh, A., Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Meth. Mod. Phys.7 (2010) 1191-1306. · Zbl 1208.81095
[83] Mostafazadeh, A., Point interactions, metamaterials, and \(\mathcal{P} \mathcal{T} \)-symmetry, Ann. Phys.368 (2016) 56-69. · Zbl 1377.81265
[84] Neeb, K.-H., A note on a theorem of S. Banach, J. Lie Theory8 (1997) 293-300. · Zbl 0904.22002
[85] Parthasarathy, K. R., Projective unitary antiunitary representations of locally compact groups, Comm. Math. Phys.15 (1969) 305-328. · Zbl 0186.28403
[86] Pauli, W., On Dirac’a new method of field quantization, Rev. Mod. Phys.15 (1943) 175-207. · Zbl 0060.45504
[87] Pontryagin, L. S., Hermitian operators in spaces with indefinite metric, Izv. Akad. Nauk. SSSR Ser. Mat.8 (1944) 243-280. · Zbl 0061.26004
[88] Prugovec̆ki, E., Principles of Quantum General Relativity (World Scientific Publishing, 1995).
[89] V. Peano and H. Schulz-Baldes, Topological edge states for disordered Bosonic systems (2017), arXiv:1708.08798. · Zbl 1390.82051
[90] Qi, X.-L., Hughes, T. and Zhang, S.-C., Topological field theory of time-reversal invariant insulators, Phys. Rev. B78 (2008) 195424.
[91] Rosenberg, J., Continuous-trace algebras from the bundle theoretic point of view, J. Austral. Math. Soc. Ser. A47 (1989) 368-381. · Zbl 0695.46031
[92] Rubinstein, J., Sternberg, P. and Ma, Q., Bifurcation diagram and pattern formation of phase slip centers in superconducting wires driven with electric currents, Phys. Rev. Lett.99 (2007) 167003.
[93] Schomerus, H., Topologically protected midgap states in complex photonic lattices, Opt. Lett.38 (2013) 1912-1914.
[94] M. Schottenloher, The unitary group in its strong topology (2013), arXiv:1309.5891.
[95] Scholtz, F. G., Geyer, H. B. and Hahne, F. J. W., Quasi-Hermitian operators in quantum mechanics and the variational principle, Ann. Phys.213 (1992) 74-101. · Zbl 0749.47041
[96] Shmul’yan, Yu. L., Extension theory operators and spaces with an indefinite metric, Izv. Akad. Nauk, SSSR Ser. Mat.38 (1974) 895-907. · Zbl 0313.47023
[97] Sato, M., Hasebe, K., Esaki, K. and Kohmoto, M., Time-reversal symmetry in non-Hermitian systems, Prog. Theor. Phys.127 (2012) 937-974. · Zbl 1254.81043
[98] Simms, D. J., Topological aspects of the projective unitary group, Proc. Camb. Phil. Soc.68 (1970) 57-60. · Zbl 0201.03501
[99] Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. and Kottos, T., Experimental study of active LRC circuits with \(\mathcal{P} \mathcal{T}\) symmetries, Phys. Rev. A84 (2011) 040101.
[100] Schnyder, A. P., Ryu, S., Furusaki, A. and Ludwig, A. W. W., Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B78 (2008) 195125. · Zbl 1180.82228
[101] Takesaki, M., Theory of Operator Algebras I (Springer-Verlag, 2002). · Zbl 0990.46034
[102] Thiang, G. C., On the \(K\)-theoretic classification of topological phases of matter, Ann. Henri Poincaré17 (2016) 757-794. · Zbl 1344.81144
[103] Tomita, M., Operators and operator algebras in Krein spaces, I Spectral Analysis in Pontrjagin spaces, RIMS-Kōkyūroku398 (1980) 131-158.
[104] Tuynman, G. M. and Wiegerinck, W. A. J. J., Central extensions and physics, J. Geom. Phys.4 (1987) 207-258. · Zbl 0649.58014
[105] H. Upmeier, Symmetric Banach Manifolds and Jordan \(C^\ast \)-Algebras, North-Holland Math. Stud., Vol. 104, Notas de Matemática, Vol. 96 (North-Holland, Amsterdam, 1985). · Zbl 0561.46032
[106] Wigner, E. P., Group Theory and its Application to the Quantum, Mechanics of Atomic Spectra, translation from German by J. J. Griffin, , Vol. 5 (Academic Press, New York, 1959). · Zbl 0085.37905
[107] Wilcox, C. H., Wave operators and asymptotic solutions of wave propagation problems of classical physics, Arch. Ration. Mech. Anal.22 (1966) 37-78. · Zbl 0159.14302
[108] Yuce, C., Topological phase in a non-Hermitian \(\mathcal{P} \mathcal{T} \)-symmetric system, Phys. Lett. A379 (2015) 1213-1218.
[109] Zhu, B., Lu, R. and Chen, S., \( \mathcal{P} \mathcal{T} \)-symmetry in the non-Hermitian Su-Schrieffer-Heeger model with complex boundary potentials, Phys. Rev. A89 (2014) 062102.
[110] Zhao, K. F., Schaden, M. and Wu, Z., Enhanced magnetic resonance signal of spin-polarized Rb atoms near surfaces of coated cells, Phys. Rev. A81 (2010) 042903.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.