×

Generalization of the phase-screen approximation for the scattering of acoustic waves. (English) Zbl 1074.76614

Summary: With the use of Fourier analysis, we describe the propagation and scattering of acoustic waves in smoothly varying, heterogeneous media. The starting point is the generalized Bremmer coupling series solution – distinguishing multiple up/down scattered constituents – to the wave equation, which requires the introduction of pseudo-differential operators. Then, we introduce a class of approximations to these pseudo-differential operators with the structure of the classical phase-screen method for one-way wave propagation. These approximations induce a fast, iterated, marching algorithm for the evaluation of the Bremmer series. The algorithm consists of multiplications by multiple ‘screen’ functions in the lateral space domain and generalized ‘phase shifts’ in the lateral wave number domain; the shuttling between the two domains is accomplished by the fast Fourier transform. Our scheme extends the use of the classical phase-screen method in the following ways: we consider larger medium variations; we enhance the accuracy for wider scattering angles; we introduce (de)composition operators to incorporate any desired source-or receiver-type with the appropriate radiation characteristics; we include the backscattered field with the aid of the generalized Bremmer coupling series.

MSC:

76Q05 Hydro- and aero-acoustics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74J20 Wave scattering in solid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] de Hoop, M. V., Generalization of the Bremmer coupling series, J. Math. Phys., 37, 3246-3282 (1996) · Zbl 0879.76088
[2] M.V. de Hoop, Direct, leading-order asymptotic, inverse scattering based on the generalized Bremmer series, in: J.A. DeSanto (Ed.), Mathematical and Numerical Aspects of Wave Propagation, SIAM, Philadelphia, PA, 1998, pp. 249-253.; M.V. de Hoop, Direct, leading-order asymptotic, inverse scattering based on the generalized Bremmer series, in: J.A. DeSanto (Ed.), Mathematical and Numerical Aspects of Wave Propagation, SIAM, Philadelphia, PA, 1998, pp. 249-253. · Zbl 0937.35121
[3] F.D. Tappert, The parabolic approximation method, in: J.B. Keller, J.S. Papadakis (Eds.), Wave Propagation and Underwater Acoustics, Lecture Notes in Physics, vol. 70, Springer, New York, 1977, pp. 224-287.; F.D. Tappert, The parabolic approximation method, in: J.B. Keller, J.S. Papadakis (Eds.), Wave Propagation and Underwater Acoustics, Lecture Notes in Physics, vol. 70, Springer, New York, 1977, pp. 224-287.
[4] Collins, M. D., Applications and time-domain solution of higher-order parabolic equations in underwater acoustics, J. Acoust. Soc. Am., 86, 1097-1102 (1989)
[5] Claerbout, J. F., Coarse grid calculations of wave in inhomogeneous media with application to delineation of complicated seismic structure, Geoph., 35, 407-418 (1970)
[6] Hadley, G. R., Wide-angle beam propagation using Padé approximant operator, Opt. Lett., 17, 1426-1428 (1992)
[7] van Stralen, M. J.N.; de Hoop, M. V.; Blok, H., Generalized Bremmer series with rational approximation for the scattering of waves in inhomogeneous media, J. Acoust. Soc. Am., 104, 1943-1963 (1998)
[8] B.L.N. Kennett, Seismic Wave Propagation in Stratified Media, Cambridge University Press, Cambridge, 1985.; B.L.N. Kennett, Seismic Wave Propagation in Stratified Media, Cambridge University Press, Cambridge, 1985. · Zbl 0514.73016
[9] Gazdag, J., Wave equation migration with the phase shift method, Geoph., 43, 1342-1351 (1978)
[10] F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, vols. 1 and 2, Plenum Press, New York, 1980.; F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, vols. 1 and 2, Plenum Press, New York, 1980. · Zbl 0453.47027
[11] Fishman, L.; McCoy, J. J., Derivation and application of extended parabolic wave theories I. The factorized Helmholtz equation, J. Math. Phys., 25, 285-296 (1984) · Zbl 0551.76069
[12] Stoffa, P. L.; Fokkema, J. T.; de Luna Freire, R. M.; Kessinger, W. P., Split-step Fourier migration, Geoph., 55, 410-421 (1990)
[13] R.-S. Wu, L.-J. Huang, Scattered field calculation in heterogeneous media using phase-screen propagator, 62nd Ann. Mtg. Soc. Explor. Geophys., Expanded Abstracts, 1992, pp. 1289-1292.; R.-S. Wu, L.-J. Huang, Scattered field calculation in heterogeneous media using phase-screen propagator, 62nd Ann. Mtg. Soc. Explor. Geophys., Expanded Abstracts, 1992, pp. 1289-1292.
[14] de Hoop, M. V.; de Hoop, A. T., Scalar space-time waves in their spectral-domain first- and second-order Thiele approximations, Wave Motion, 15, 229-265 (1992) · Zbl 0786.35085
[15] Fishman, L.; McCoy, J. J., Derivation and application of extended parabolic wave theories II. Path integral representations, J. Math. Phys., 25, 297-308 (1984) · Zbl 0551.76070
[16] McCoy, J. J.; Frazer, L. N., Pseudodifferential operators, operator orderings, marching algorithms and path integrals for one-way equations, Wave Motion, 9, 413-427 (1987) · Zbl 0649.35080
[17] Ratcliffe, J. A., Some aspects of diffraction theory and their application to the ionosphere, Rep. Prog. Phys., 19, 190-263 (1956) · Zbl 0072.43801
[18] Mercier, R. P., Diffraction by a screen causing large random phase fluctuations, Proc. Cambridge Philos. Soc., 58, 382-400 (1962) · Zbl 0115.42807
[19] Martin, J. M.; Flatté, S. M., Intensity images and statistics from numerical simulation of wave propagation in 3D random media, Appl. Opt., 27, 2111-2125 (1988)
[20] M.D. Feit, J.A. Fleck Jr., Light propagation in graded-index optical fibers, Appl. Opt. 17 (1978) 3990-3998.; M.D. Feit, J.A. Fleck Jr., Light propagation in graded-index optical fibers, Appl. Opt. 17 (1978) 3990-3998.
[21] Buckley, R., Diffraction by a random phase-changing screen: a numerical experiment, J. Atmos. Terr. Phys., 37, 1431-1446 (1975)
[22] Bramley, E. N., The accuracy of computing ionospheric radiowave scintillation by the thin-phase screen approximation, J. Atmos. Terr. Phys., 39, 367-373 (1977)
[23] Knepp, D. L., Multiple phase screen calculation of the temporal behavior of stochastic waves, Proc. IEEE, 71, 722-737 (1983)
[24] S.M. Flatté, R. Dashen, W.H. Munk, K.M. Watson, F. Zachariasen, Sound Transmission through a Fluctuating Ocean, Cambridge University Press, New York, 1979.; S.M. Flatté, R. Dashen, W.H. Munk, K.M. Watson, F. Zachariasen, Sound Transmission through a Fluctuating Ocean, Cambridge University Press, New York, 1979.
[25] Thomson, D. J.; Chapman, N. R., A wide-angle split-step algorithm for the parabolic equation, J. Acoust. Soc. Am., 74, 1848-1854 (1983) · Zbl 0545.76083
[26] Fisk, M. D.; McCartor, G. D., The phase screen method for vector elastic waves, J. Geophys. Res., 96, 5985-6010 (1991)
[27] Fisk, M. D.; Charrette, E. E.; McCartor, G. D., A comparison of phase screen and finite difference calculations for elastic waves in random media, J. Geophys. Res., 97, 12409-12423 (1992)
[28] Wu, R.-S., Wide-angle elastic wave one-way propagation in heterogeneous media and an elastic wave complex-screen method, J. Geophys. Res., 99, 751-766 (1994)
[29] Berry, M. V., Diffractals, J. Phys. A, 12, 781-796 (1979) · Zbl 0407.60100
[30] M.V. de Hoop, A.K. Gautesen, Uniform asymptotic expansion of the generalized Bremmer series, SIAM J. Appl. Math. (1999), in press.; M.V. de Hoop, A.K. Gautesen, Uniform asymptotic expansion of the generalized Bremmer series, SIAM J. Appl. Math. (1999), in press. · Zbl 0979.35030
[31] De Witte-Morette, C.; Maheshwari, A.; Nelson, B., Path integration in non-relativistic quantum mechanics, Physics Reports, 50, 255-372 (1979)
[32] D.V. Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, 1946.; D.V. Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, 1946. · Zbl 0060.24801
[33] de Hoop, A. T., Convergence criterion for the time-domain iterative Born approximation to scattering by an inhomogeneous dispersive object, J. Opt. Soc. Am. A, 8, 1256-1260 (1991)
[34] Gazdag, J.; Sguazzero, P., Migration of seismic data by phase shift plus interpolation, eoph., 49, 124-131 (1984)
[35] J.H. Le Rousseau, M.V. de Hoop, Modeling and imaging with the scalar generalized-screen algorithm in isotropic media, Geoph. (1999), submitted for publication.; J.H. Le Rousseau, M.V. de Hoop, Modeling and imaging with the scalar generalized-screen algorithm in isotropic media, Geoph. (1999), submitted for publication.
[36] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973.; J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973. · Zbl 0268.73005
[37] L. Schwartz, Théorie des Distributions, 2nd ed., Hermann, Paris, 1966.; L. Schwartz, Théorie des Distributions, 2nd ed., Hermann, Paris, 1966.
[38] R.S. Wu, L.-J. Huang, Reflected wave modeling in heterogeneous acoustic media using the de Wolf approximation, in: S. Hassanzadeh (Ed.), Mathematical Methods in Geophysical Imaging III, Proc. SPIE, vol. 2571, 1995, pp.176-186.; R.S. Wu, L.-J. Huang, Reflected wave modeling in heterogeneous acoustic media using the de Wolf approximation, in: S. Hassanzadeh (Ed.), Mathematical Methods in Geophysical Imaging III, Proc. SPIE, vol. 2571, 1995, pp.176-186.
[39] J.H. Le Rousseau, M.V. de Hoop, Modeling and imaging with the generalized-screen algorithm, 68th Ann. Mtg. Soc. Explor. Geophys., Expanded Abstracts, 1998, pp.1937-1940.; J.H. Le Rousseau, M.V. de Hoop, Modeling and imaging with the generalized-screen algorithm, 68th Ann. Mtg. Soc. Explor. Geophys., Expanded Abstracts, 1998, pp.1937-1940.
[40] L.-J. Huang, R.-S. Wu, 3D prestack depth migration with acoustic pseudo-screen propagators, in: S. Hassanzadeh (Ed.), Mathematical Methods in Geophysical Imaging IV, Proc. SPIE, vol. 2822, 1996, pp. 40-51.; L.-J. Huang, R.-S. Wu, 3D prestack depth migration with acoustic pseudo-screen propagators, in: S. Hassanzadeh (Ed.), Mathematical Methods in Geophysical Imaging IV, Proc. SPIE, vol. 2822, 1996, pp. 40-51.
[41] R.-S. Wu, S. Jin,Windowed GSP (generalized-screen propagators) migration applied to SEG-EAEG salt model data, 67th Ann. Mtg. Soc. Explor. Geophys., Expanded Abstracts, 1997, pp. 1746-1749.; R.-S. Wu, S. Jin,Windowed GSP (generalized-screen propagators) migration applied to SEG-EAEG salt model data, 67th Ann. Mtg. Soc. Explor. Geophys., Expanded Abstracts, 1997, pp. 1746-1749.
[42] L.-J. Huang, M.C. Fehler, R.-S. Wu, Extended local Born Fourier migration method, Geoph. (1998), submitted for publication.; L.-J. Huang, M.C. Fehler, R.-S. Wu, Extended local Born Fourier migration method, Geoph. (1998), submitted for publication.
[43] R.S. Wu, X.B. Xie, Multi-screen backpropagator for fast 3D elastic prestack migration, in: S. Hassanzadeh (Ed.), Mathematical Methods in Geophysical Imaging II, Proc. SPIE, vol. 2301, 1994, pp. 181-193.; R.S. Wu, X.B. Xie, Multi-screen backpropagator for fast 3D elastic prestack migration, in: S. Hassanzadeh (Ed.), Mathematical Methods in Geophysical Imaging II, Proc. SPIE, vol. 2301, 1994, pp. 181-193.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.