×

zbMATH — the first resource for mathematics

Braid matrices and quantum gates for Ising anyons topological quantum computation. (English) Zbl 1188.81042
Summary: We study various aspects of the topological quantum computation scheme based on the non-Abelian anyons corresponding to fractional quantum hall effect states at filling fraction \(5/2\) using the Temperley-Lieb recoupling theory. Unitary braiding matrices are obtained by a normalization of the degenerate ground states of a system of anyons, which is equivalent to a modification of the definition of the 3-vertices in the Temperley-Lieb recoupling theory as proposed by Kauffman and Lomonaco. With the braid matrices available, we discuss the problems of encoding of qubit states and construction of quantum gates from the elementary braiding operation matrices for the Ising anyons model. In the encoding scheme where 2 qubits are represented by 8 Ising anyons, we give an alternative proof of the no-entanglement theorem given by Bravyi and compare it to the case of Fibonacci anyons model. In the encoding scheme where 2 qubits are represented by 6 Ising anyons, we construct a set of quantum gates which is equivalent to the construction of Georgiev.
MSC:
81P68 Quantum computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
[2] A.Y. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003)
[3] R.W. Ogburn, J. Preskill, Lect. Notes Comput. Sci. 1509, 341 (1999)
[4] M.H. Freedman, A. Kitaev, Z. Wang, Commun. Math. Phys. 227, 605 (2002)
[5] M.H. Freedman, M. Larsen, Z. Wang, Commun. Math. Phys. 228, 177 (2002)
[6] M. Freedman, A. Kitaev, M. Larsen, Z. Wang, Bull. Am. Math. Soc. 40, 31 (2003)
[7] E. Dennis, A. Kitaev, A. Landahl, J. Preskill, J. Math. Phys. 43, 4452 (2002)
[8] C. Mochon, Phys. Rev. A 67, 022315 (2003)
[9] C. Mochon, Phys. Rev. A 69, 032306 (2004)
[10] L.H. Kauffman, S.J. Lomonaco Jr., New J. Phys. 6, 134 (2004)
[11] J. Preskill, http://www.theory.caltech.edu/\(\sim\)preskill/ph219/topological.pdf
[12] C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008)
[13] G.K. Brennen, J.K. Pachos, Proc. R. Soc. A 464, 1 (2008)
[14] S.B. Chung, M. Stone, Phys. Rev. B 73, 245311 (2006)
[15] A. Stern, B.I. Halperin, Phys. Rev. Lett. 96, 016802 (2006)
[16] P. Bonderson, A. Kitaev, K. Shtengel, Phys. Rev. Lett. 96, 016803 (2006)
[17] P. Bonderson, K. Shtengel, J.K. Slingerland, Phys. Rev. Lett. 97, 016401 (2006)
[18] D.E. Feldman, A. Kitaev, Phys. Rev. Lett. 97, 186803 (2006)
[19] D.E. Feldman, Y. Gefen, A. Kitaev, K.T. Law, A. Stern, Phys. Rev. B 76, 085333 (2007)
[20] Fractional Statistics and Anyon Superconductivity, edited by F. Wilczek (World Scientific, Singapore, 1990) · Zbl 0709.62735
[21] J. Fröhlich, F. Gabbiani, Rev. Math. Phys. 2–3, 251 (1990)
[22] D.V. Averin, V.J. Goldman, Solid State Commun. 121, 25 (2002)
[23] G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991)
[24] N. Read, E. Rezayi, Phys. Rev. B 59, 8084 (1999)
[25] E. Witten, Commun. Math. Phys. 121, 351 (1989)
[26] A.B. Zamolodchikov, V.A. Fateev, Sov. Phys. JETP 62, 215 (1985)
[27] V.F.R. Jones, Bull. Amer. Math. Soc. 129, 103 (1985)
[28] L.H. Kauffman, S.J. Lomonaco Jr., J. Knot Theory Ramif. 16, 267 (2007)
[29] L.H. Kauffman, S.J. Lomonaco Jr., Int. J. Mod. Phys. B, 22, 5065 (2008)
[30] L.H. Kauffman, S.L. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (Princeton Univ. Press, Princeton, 1994) · Zbl 0821.57003
[31] M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu, Nature (London) 452, 829 (2008)
[32] I.P. Radu, J.B. Miller, C.M. Marcus, M.A. Kastner, L.N. Pfeiffer, K.W. West, Science 320, 899 (2008)
[33] C. Nayak, F. Wilczek, Nucl. Phys. B 479, 529 (1996)
[34] L.S. Georgiev, J. Phys. A: Math. Theor. 42, 225203 (2009)
[35] J.K. Slingerland, F.A. Bais, Nucl. Phys. B 612, 229 (2001)
[36] J.P. Eisenstein, K.B. Cooper, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 88, 076801 (2002)
[37] J.S. Xia, W. Pan, C.L. Vincente, E.D. Adams, N.S. Sullivan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 93, 176809 (2004)
[38] S. Das Sarma, M. Freedman, C. Nayak, Phys. Rev. Lett. 94, 166802 (2005)
[39] S. Bravyi, Phys. Rev. A 73, 042313 (2006)
[40] M. Freedman, C. Nayak, K. Walker, Phys. Rev. B 73, 245307 (2006)
[41] L.S. Georgiev, Phys. Rev. B 74, 235112 (2006)
[42] L.S. Georgiev, Nucl. Phys. B 789, 552 (2008)
[43] O. Zilberberg, B. Braunecker, D. Loss, Phys. Rev. A 77, 012327 (2008)
[44] L.S. Georgiev, J. Stat. Mech. P12013 (2009)
[45] A. Ahlbrecht, L.S. Georgiev, R.F. Werner, Phys. Rev. A 79, 032311 (2009)
[46] N.E. Bonesteel, L. Hormozi, G. Zikos, S.H. Simon, Phys. Rev. Lett. 95, 140503 (2005)
[47] S.H. Simon, N.E. Bonesteel, M.H. Freedman, N. Petrovic, L. Hormozi, Phys. Rev. Lett. 96, 070503 (2006)
[48] L. Hormozi, G. Zikos, N.E. Bonesteel, S.H. Simon, Phys. Rev. B 75, 165310 (2007)
[49] G. Moore, N. Seiberg, Commun. Math. Phys. 123, 177 (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.