×

Exact propagating multi-anti-kink soliton solutions of a \((3+1)\)-dimensional B-type Kadomtsev-Petviashvili equation. (English) Zbl 1351.37241

Summary: We explore the shape changing and clevaging nature of anti-kink solutions of a \((3+1)\)-dimensional B-type Kadomtsev-Petviashvili equation. We achieved this by invoking the multiple exp-function method aided with symbolic computation which remains an indispensable tool to deal with computational algebraic systems.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35C08 Soliton solutions

Software:

ATFM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ma, W.X.: Diversity of exact solutions to a restricted Boiti-Leon-Pempinelli dispersive long-wave system. Phys. Lett. A 319, 325-333 (2003) · Zbl 1030.35021 · doi:10.1016/j.physleta.2003.10.030
[2] Hu, H.C., Tong, B., Lou, S.Y.: Nonsingular positon and complexiton solutions for the coupled KdV system. Phys. Lett. A 351, 403-412 (2006) · Zbl 1187.35196 · doi:10.1016/j.physleta.2005.11.047
[3] Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650-654 (1992) · Zbl 1219.35246 · doi:10.1119/1.17120
[4] Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations. Comput. Phys. Commun. 98, 288-296 (1996) · Zbl 0948.76595 · doi:10.1016/0010-4655(96)00104-X
[5] Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212-218 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[6] Kavitha, L., Akila, N., Prabhu, A., Kuzmanovska-Barandovska, O., Gopi, D.: Exact solitary solutions of an inhomogeneous modified nonlinear Schrödinger equation with competing nonlinearities. Math. Comput. Model. 53, 1095-1110 (2011) · Zbl 1217.35173 · doi:10.1016/j.mcm.2010.10.030
[7] He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30(3), 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[8] Shin, B.C., Darvishi, M.T., Barati, A.: Some exact and new solutions of the Nizhnik-Novikov-Vesselov equation using the exp-function method. Comput. Math. Appl. 58(11/12), 2147-2151 (2009) · Zbl 1189.35291 · doi:10.1016/j.camwa.2009.03.006
[9] Darvishi, M.T., Khani, F.: A series solution of the foam drainage equation. Comput. Math. Appl. 58, 360-368 (2009) · Zbl 1189.65247 · doi:10.1016/j.camwa.2009.04.007
[10] Aziz, A., Khani, F., Darvishi, M.T.: Homotopy analysis method for variable thermal conductivity heat flux gage with edge contact resistance. Zeitschrift für Naturforschung A Phys. Sci. 65a(10), 771-776 (2010)
[11] Khani, F., Darvishi, M.T., Gorla, R.S.R.: Analytical investigation for cooling turbine disks with a non-Newtonian viscoelastic fluid. Comput. Math. Appl. 61, 172-1738 (2011) · Zbl 1219.76037 · doi:10.1016/j.camwa.2011.01.040
[12] Dai, Z.D., Liu, J., Li, D.L.: Applications of HTA and EHTA to YTSF equation. Appl. Math. Comput. 207, 360-364 (2009) · Zbl 1159.35408 · doi:10.1016/j.amc.2008.10.042
[13] Wang, C.-J., Dai, Z.-D., Mu, G., Lin, S.-Q.: New periodic solutions for new (2+1)-dimensional KDV equation. Commun. Theor. Phys. 52, 862-864 (2009) · Zbl 1186.35193 · doi:10.1088/0253-6102/52/5/21
[14] Zheng, C.-L., Qiang, J.-Y., Wang, S.-H.: Stamding, periodic and solitary waves in (1+1)-dimensional Caudry-Dodd-Gibson-Sawada-Kortera system. Commun. Theor. Phys. 54, 1054-1058 (2010) · Zbl 1218.35200 · doi:10.1088/0253-6102/54/6/18
[15] Darvishi, M.T., Najafi, M.: A modification of extended homoclinic test approach to solve the (3+1)-dimensional potential-YTSF equation. Chin. Phys. Lett. 28(4), article no. 040202, (2011) · Zbl 1202.35281
[16] Najafi, M., Najafi, M., Darvishi, M.T.: New exact solutions to the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation: Modification of extended homoclinic test approach, Chin. Phys. Lett., 29(4), article no. 040202, (2012) · Zbl 0571.35105
[17] Sirendaoreji, : A new auxiliary equation and exact traveling wave solutions of nonlinear equations. Phys. Lett. A 356, 124-130 (2006) · Zbl 1160.35527 · doi:10.1016/j.physleta.2006.03.034
[18] Ma, H.C., Yu, Y.D., Ge, D.J.: New exact traveling wave solutions for the modified form of Degasperis-Procesi equation. Appl. Math. Comput. 203, 792-798 (2008) · Zbl 1160.35524 · doi:10.1016/j.amc.2008.05.088
[19] Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Cnodial and snodial wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method. Commun. Nonlinear Sci. Numer. Simul. 18(4), 915-925 (2013) · Zbl 1261.35044 · doi:10.1016/j.cnsns.2012.08.034
[20] Bhrawy, A.H., Biswas, A., Javidi, M., Ma, W.-X., Pinar, Z., Yildirim, A.: New solutions for (1+1)-dimensional and (2+1)-dimensional Kaup-Kupershmidt equations. RM 63(1-2), 675-686 (2013) · Zbl 1259.35008
[21] Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Biswas, A.: Solitons and other solutions to Kadomtsev-Petviashvili equation of B-type. Rom. J. Phys. 58(7-8), 729-748 (2013)
[22] Bhrawy, A.H., Kumar, S., Triki, H., Yildirim, A., Biswas, A.: Solitons and other solutions to the (3+1)-dimensional extended Kadomtsev-Petviashvili equation with power low nonlinearity. Rom. Rep. Phys. 65(1), 27-62 (2013)
[23] Triki, H., Kara, A.H., Bhrawy, A., Biswas, A.: Soliton solution and conservation law of Gear-Grimshaw model for shallow water waves. Acta Phys. Pol. A 125(5), 1099-1106 (2014) · doi:10.12693/APhysPolA.125.1099
[24] Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30-46 (2014) · Zbl 1339.65188 · doi:10.1016/j.amc.2014.08.062
[25] Triki, H., Mirzazadeh, M., Bhrawy, A.H., Razborova, P., Biswas, A.: Soliton and other solutions to long-wave interaction equation. Rom. J. Phys. 60(1-2), 72-86 (2015)
[26] Yusufoglu, E.: New solitary solutions for the MBBM equations using Exp-function method. Phys. Lett. A 372, 442-446 (2008) · Zbl 1217.35156 · doi:10.1016/j.physleta.2007.07.062
[27] Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004) · Zbl 1099.35111 · doi:10.1017/CBO9780511543043
[28] Zhang, Y., Ye, L.Y., Lv, Y.N., Zhao, H.G.: Periodic wave solutions of the Boussinesq equation. J. Phys. A Math. Gen. 40, 5539-5549 (2007) · Zbl 1138.35406 · doi:10.1088/1751-8113/40/21/006
[29] Ma, W.X., Zhou, R.G., Gao, L.: Exact one-periodic wave solutions to Hirota bilinear equations in 2+1 dimensions. Mod. Phys. Lett. A 24, 1677-1688 (2009) · Zbl 1168.35426 · doi:10.1142/S0217732309030096
[30] Ma, W.X., Fan, E.G.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950-959 (2011) · Zbl 1217.35164 · doi:10.1016/j.camwa.2010.12.043
[31] Date, E., Jimbo, M., Miwa, T.: Method for generating discrete soliton equations. III. J. Phys. Soc. 52, 388-393 (1983) · Zbl 0571.35105 · doi:10.1143/JPSJ.52.388
[32] Hirota, R.: Discrete analogue of a generalized Toda equation. J. Phys. Soc. Jpn. 50, 3785-3791 (1981) · doi:10.1143/JPSJ.50.3785
[33] Miwa, T.: On Hirota difference equations. Proc. Jpn. Acad. A58, 9-12 (1982) · Zbl 0508.39009 · doi:10.3792/pjaa.58.9
[34] Zhang, H., Li, B., Chen, Y.: Full symmetry groups, Painlevé integrability and exact solutions of the nonisospectral BKP equation. Appl. Math. Comput. 217, 1555-1560 (2010) · Zbl 1202.35281 · doi:10.1016/j.amc.2009.06.044
[35] Ma, W.X., Huang, T.W., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr., 82 (2010) Art. no. 065003 · Zbl 1219.35209
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.