×

Simulating black hole white dwarf encounters. (English) Zbl 1197.83015

Summary: The existence of supermassive black holes lurking in the centers of galaxies and of stellar binary systems containing a black hole with a few solar masses has been established beyond reasonable doubt. The idea that black holes of intermediate masses may exist in globular star clusters has gained credence over recent years but no conclusive evidence has been established yet. An attractive feature of this hypothesis is the potential to not only disrupt solar-type stars but also compact white dwarf stars. In close encounters the white dwarfs can be sufficiently compressed to thermonuclearly explode. The detection of an underluminous thermonuclear explosion accompanied by a soft, transient X-ray signal would be compelling evidence for the presence of intermediate mass black holes in stellar clusters. In this paper we focus on the numerical techniques used to simulate the entire disruption process from the initial parabolic orbit, over the nuclear energy release during tidal compression, the subsequent ejection of freshly synthesized material and the formation process of an accretion disk around the black hole.

MSC:

83B05 Observational and experimental questions in relativity and gravitational theory
83C57 Black holes

Software:

MAGMA
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Artemova, I. V.; Bjoernsson, G.; Novikov, I. D., Modified Newtonian potentials for the description of relativistic effects in accretion disks around black holes, Astrophys. J., 461, 565 (1996)
[2] Balsara, D., Von Neumann stability analysis of smooth particle hydrodynamics—suggestions for optimal algorithms, J. Comput. Phys., 121, 357 (1995) · Zbl 0835.76070
[3] Benz, W., Smooth particle hydrodynamics: A review, (Buchler, J., Numerical Modeling of Stellar Pulsations (1990), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 269
[4] Benz, W.; Bowers, R.; Cameron, A.; Press, W., Astrophys. J., 348, 647 (1990)
[5] Dearborn, D. S.P.; Wilson, J. R.; Mathews, G. J., Relativistically compressed exploding white dwarf model for Sagittarius a east, Astrophys. J., 630, 309-320 (2005)
[6] Gebhardt, K.; Rich, R. M.; Ho, L. C., A \(20, 000 M_\odot\) black hole in the stellar cluster G1, Astrophys. J., 578, L41-L45 (2002)
[7] Gebhardt, K.; Rich, R. M.; Ho, L. C., An intermediate-mass black hole in the globular cluster G1: Improved significance from new Keck and Hubble Space Telescope observations, Astrophys. J., 634, 1093-1102 (2005)
[8] Gerssen, J.; van der Marel, R. P.; Gebhardt, K.; Guhathakurta, P.; Peterson, R. C.; Pryor, C., Hubble space telescope evidence for an intermediate-mass black hole in the globular cluster M15. II. Kinematic analysis and dynamical modeling, Astron. J., 124, 3270-3288 (2002)
[9] Gerssen, J.; van der Marel, R. P.; Gebhardt, K.; Guhathakurta, P.; Peterson, R. C.; Pryor, C., Addendum: Hubble space telescope evidence for an intermediate-mass black hole in the globular cluster M15. II. Kinematic analysis and dynamical modeling, Astron. J., 125, 376-377 (2003)
[10] Hix, W. R.; Khokhlov, A. M.; Wheeler, J. C.; Thielemann, F.-K., The quasi-equilibrium-reduced alpha-network, Astrophys. J., 503, 332 (1998)
[11] Itoh, N.; Hayashi, H.; Nishikawa, A.; Kohyama, Y., Astrophys. J., 339, 354 (1989)
[12] W.H.G. Lewin, M. van der Klis, Compact stellar X-ray sources, Compact stellar X-ray sources, 2006; W.H.G. Lewin, M. van der Klis, Compact stellar X-ray sources, Compact stellar X-ray sources, 2006
[13] Lomax, H.; Pulliam, T.; Zingg, D., Fundamentals of Computational Fluid Dynamics (2001), Springer: Springer Berlin · Zbl 0970.76002
[14] Luminet, J.-P.; Pichon, B., Tidally-detonated nuclear reactions in main sequence stars passing near a large black hole, Astron. Astrophys., 209, 85-102 (1989)
[15] Monaghan, J.; Lattanzio, J., A refined particle method for astrophysical problems, Astron. Astrophys., 149, 135 (1985) · Zbl 0622.76054
[16] Monaghan, J. J., Ann. Rev. Astron. Astrophys., 30, 543 (1992)
[17] Monaghan, J. J., SPH compressible turbulence, Mon. Not. R. Astron. Soc., 335, 843-852 (2002)
[18] Monaghan, J. J., Smoothed particle hydrodynamics, Reports of Progress in Physics, 68, 1703-1759 (2005)
[19] Morris, J.; Monaghan, J., A switch to reduce SPH viscosity, J. Comp. Phys., 136, 41 (1997) · Zbl 0889.76065
[20] Paczynsky, B.; Wiita, P. J., Thick accretion disks and supercritical luminosities, Astron. Astrophys., 88, 23-31 (1980)
[21] Pooley, D.; Rappaport, S., X-rays from the globular cluster G1: Intermediate-mass black hole or low-mass X-ray binary?, Astrophys. J., 644, L45-L48 (2006)
[22] Portegies Zwart, S. F.; Baumgardt, H.; Hut, P.; Makino, J.; McMillan, S. L.W., Formation of massive black holes through runaway collisions in dense young star clusters, Nature, 428, 724-726 (2004)
[23] Richstone, D.; Ajhar, E. A.; Bender, R.; Bower, G.; Dressler, A.; Faber, S. M.; Filippenko, A. V.; Gebhardt, K.; Green, R.; Ho, L. C.; Kormendy, J.; Lauer, T. R.; Magorrian, J.; Tremaine, S., Supermassive black holes and the evolution of galaxies, Nature, 395, A14 (1998)
[24] Rosswog, S., Mergers of neutron star-black hole binaries with small mass ratios: Nucleosynthesis, gamma-ray bursts, and electromagnetic transients, Astrophys. J., 634, 1202-1213 (2005)
[25] Rosswog, S.; Davies, M. B., High-resolution calculations of merging neutron stars. I. Model description and hydrodynamic evolution, Mon. Not. R. Astron. Soc., 334, 481-497 (2002)
[26] Rosswog, S.; Davies, M. B.; Thielemann, F.-K.; Piran, T., Merging neutron stars: Asymmetric systems, Astron. Astrophys., 360, 171-184 (2000)
[27] S. Rosswog, E. Ramirez-Ruiz, R. Hix, Atypical thermonuclear supernovae from tidally crushed white dwarfs, Astrophys. J., in press, arXiv: 0712.2513; S. Rosswog, E. Ramirez-Ruiz, R. Hix, Atypical thermonuclear supernovae from tidally crushed white dwarfs, Astrophys. J., in press, arXiv: 0712.2513
[28] S. Rosswog, E. Ramirez-Ruiz, R. Hix, Disruptions of white dwarfs as probes of intermediate mass black holes in globular clusters, submitted for publication; S. Rosswog, E. Ramirez-Ruiz, R. Hix, Disruptions of white dwarfs as probes of intermediate mass black holes in globular clusters, submitted for publication
[29] Rosswog, S.; Price, D., Magma: A magnetohydrodynamics code for merger applications, Mon. Not. R. Astron. Soc., 379, 915-931 (2007)
[30] Sod, G., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 43, 1-31 (1978) · Zbl 0387.76063
[31] Springel, V.; Hernquist, L., Cosmological smoothed particle hydrodynamics simulations: The entropy equation, Mon. Not. R. Astron. Soc., 333, 649-664 (2002)
[32] Timmes, F. X.; Hoffman, R. D.; Woosley, S. E., An inexpensive nuclear energy generation network for stellar hydrodynamics, Astrophys. J., 129, Suppl., 377-398 (2000)
[33] Timmes, F. X.; Swesty, F. D., The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the Helmholtz free energy, Astrophys. J., 126, Suppl., 501-516 (2000)
[34] Wilson, J. R.; Mathews, G. J., White dwarfs near black holes: A new paradigm for type I supernovae, Astrophys. J., 610, 368-377 (2004)
[35] Zezas, A.; Fabbiano, G.; Rots, A. H.; Murray, S. S., Chandra observations of “The Antennae” galaxies (NGC 4038/4039). III. X-ray properties and multiwavelength associations of the X-ray source population, Astrophys. J., 577, 710-725 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.