×

The effect of interfacial thermal resistance on interface crack subjected to remote heat flux. (English) Zbl 1458.74036

Summary: We consider the thermoelastic problem of an interface crack between two dissimilar semi-infinite isotropic materials under a uniform remote heat flux in plane deformation. The crack face is assumed to be partially thermopermeable (defined by a partial insulation coefficient of the crack), while the interface is assumed to be perfectly bonded except that a constant thermal resistance is introduced into the interfacial region near the tips of the crack. By using the integral transform method, we obtain the analytic solution for the thermoelastic field in the entire bi-material system. Numerical examples are presented to study the influence of interfacial thermal resistance on the thermal stress intensity factors and the crack opening/sliding displacements. It is shown that the magnitudes of the mode I and mode II TSIFs, as well as the crack opening displacements, increase with the increasing interfacial thermal resistance, while the crack sliding displacement is insensitive to the change of interfacial thermal resistance.

MSC:

74F05 Thermal effects in solid mechanics
74R10 Brittle fracture
74G70 Stress concentrations, singularities in solid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gross, D.; Heimer, St, Crack closure and crack path prediction for curved cracks under thermal load, Eng. Fract. Mech., 46, 633-640 (1993) · doi:10.1016/0013-7944(93)90169-S
[2] Petrova, Ve; Herrmann, Kp, Thermal crack problems for a bimaterial with an interface crack and internal defects subjected to a heat source, Int. J. Fract., 128, 49-63 (2004) · Zbl 1300.74049 · doi:10.1023/B:FRAC.0000040967.13962.ec
[3] Herrmann, Kp; Dong, M.; Hauck, T., Modeling of thermal cracking in elastic and elastoplastic two-phase solids, J. Therm. Stress., 20, 853-904 (2007) · doi:10.1080/01495739708956131
[4] Chen, J., Determination of thermal stress intensity factors for an interface crack in a graded orthotropic coating-substrate structure, Int. J. Fract., 133, 303-328 (2005) · Zbl 1196.74060 · doi:10.1007/s10704-005-4728-7
[5] Lee, Gh; Beom, Hg, Interfacial edge crack between dissimilar orthotropic thermoelastic materials under uniform heat flow, J. Mech. Sci. Technol., 28, 8, 3041-3050 (2014) · doi:10.1007/s12206-014-0711-4
[6] Powell, Br; Youngblood, Ge; Hasselman, Dph; Bentsen, Ld, Effect of thermal expansion mismatch on the thermal diffusivity on glass-Ni composites, J. Am. Ceram. Soc., 63, 9-10, 581-586 (1980) · doi:10.1111/j.1151-2916.1980.tb10769.x
[7] Hasselman, Dph; Johnson, Lf, Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater., 21, 6, 508-514 (1987) · doi:10.1177/002199838702100602
[8] Nan, Cw; Birringer, R.; Clarke, Dr; Gleiter, H., Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys., 81, 10, 6692-6699 (1997) · doi:10.1063/1.365209
[9] Lee, Ky, Thermal stress intensity factors for partially insulated interface crack under uniform heat flow, Eng. Fract. Mech., 50, 4, 475-482 (1995) · doi:10.1016/0013-7944(94)00243-B
[10] Yang, Yc; Lee, Hl; Hsu, Jc; Chu, Ss, Thermal stresses in multilayer gun barrel with interlayer thermal contact resistance, J. Therm. Stress., 31, 624-637 (2008) · doi:10.1080/01495730801981582
[11] Jin, Zh; Tohgo, K.; Fujii, T.; Shimamura, Y., Effect of interfacial thermal resistance on surface cracking in a coating layer bonded to a substrate, Mech. Eng. Lett., 2, 16, 16-00436 (2016) · doi:10.1299/mel.16-00436
[12] Wang, J.; Jin, Zh; Gao, Cf, A sub-interface thermal crack problem for bonded dissimilar plates with interfacial thermal resistance, J. Therm. Stress., 42, 5, 629-642 (2019) · doi:10.1080/01495739.2018.1563515
[13] Noda, N.; Hetnarski, Rb; Tanigawa, Y., Thermal Stresses (2003), New York: Taylor and Francis, New York
[14] Tada, H.; Paris, Pc; Irwin, Gr, The Stress Analysis of Cracks Handbook (2000), New York: ASME Press, New York
[15] Sun, Ct; Jin, Zh, Fracture Mechanics (2012), Cambridge: Academic Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.