×

On Langmuir circulation in \(1:2\) and \(1:3\) resonance. (English) Zbl 1430.76191

Summary: This paper is concerned with the nonlinear dynamics of spanwise periodic longitudinal vortex modes (Langmuir circulation (LC)) that arise through the instability of two-dimensional periodic flows (waves) in a non-stratified uniformly sheared layer of finite depth. Of particular interest is the excitation of the vortex modes either in the absence of interaction or in resonance, as described by nonlinear amplitude equations built upon the mean field Craik-Leibovich (CL) equations. Since Y-junctions in the surface footprints of Langmuir circulation indicate sporadic increases (doubling) in spacing as they evolve to the scale of sports stadiums, interest is focused on bifurcations that instigate such changes. To that end, surface patterns arising from the linear and nonlinear excitation of the vortex modes are explored, subject to two parameters: a Rayleigh number \(\mathcal{R}\) present in the CL equations and a symmetry breaking parameter \(\gamma\) in the mixed free surface boundary conditions that relax to those at the layer bottom where \(\gamma=0\). Looking first to linear instability, it is found as \(\gamma\) increases from zero to unity, that the neutral curves evolve from asymmetric near onset to almost symmetric. The nonlinear dynamics of single modes is then studied via an amplitude equation of Ginzburg-Landau type. While typically of cubic order when the bifurcation is supercritical (as it is here) and the neutral curves are parabolic, the Ginzburg-Landau equation must instead here be of quartic order to recover the asymmetry in the neutral curves. This equation is then subjected to an Eckhaus instability analysis, which indicates that linearly unstable subharmonics mostly reside outside the Eckhaus boundary, thereby excluding them as candidates for excitation. The surface pattern is then largely unchanged from its linear counterpart, although the character of the pattern does change when \(\gamma\ll 1\) as a result of symmetry breaking. Attention is then turned to strong resonance between the least stable linear mode and a sub-harmonic of it, as described by coupled nonlinear amplitude equations of Stuart-Landau type. Both \(1:2\) and \(1:3\) resonant interactions are considered. Phase plots and bifurcation diagrams are employed to reveal classes of solution that can occur. Dominant over much of the \(\mathcal{R}-\gamma\) range considered are non-travelling pure- and mixed-mode equilibrium solutions that act singly or together. To wit, pure modes solutions alone act to realise windrows with spacings in accord with linear theory, while bistability can realise Y-junctions and, depending upon initial conditions, double or even triple the dominant spacing of LC.

MSC:

76E20 Stability and instability of geophysical and astrophysical flows
76E30 Nonlinear effects in hydrodynamic stability
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andrews, D. G. & McIntyre, M. E.1978An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech.89, 609-646. · Zbl 0426.76025
[2] Armbruster, D., Guckenheimer, J. & Holmes, P.1988Heteroclinic cycles and modulated travelling waves in systems with O (2) symmetry. Physica D29, 257-282. · Zbl 0634.34027
[3] Babanin, A. V., Ganopolski, A. & Phillips, W. R. C.2009Wave-induced upper-ocean mixing in a climate model of intermediate complexity. Ocean Model.29, 189-197.
[4] Barstow, S. F.1983The ecology of Langmuir circulation: a review. Mar. Environ. Res.9, 211-236.
[5] Bhaskaran, R. & Leibovich, S.2002Eulerian and Lagrangian Langmuir circulation patterns. Phys. Fluids14, 2557-2571. · Zbl 1185.76052
[6] Chini, G. P. & Leibovich, S.2003Resonant Langmuir-circulation-internal-wave interaction. Part 1. Internal wave reflection. J. Fluid Mech.495, 35-55. · Zbl 1065.76090
[7] Chini, G. P. & Leibovich, S.2005Resonant Langmuir-circulation-internal-wave interaction. Part 2. Langmuir circulation instability. J. Fluid Mech.524, 99-120. · Zbl 1066.76034
[8] Cox, S. M.1996Mode interactions in Rayleigh-Bénard convection. Physica D95, 50-61. · Zbl 0899.76170
[9] Cox, S. M. & Leibovich, S.1993Langmuir circulations in a surface layer bounded by a strong thermocline. J. Phys. Oceanogr.23, 1330-1345.
[10] Cox, S. M. & Leibovich, S.1994Large-scale Langmuir circulation and double-diffusive convection: evolution equations and flow transitions. J. Fluid Mech.276, 189-210. · Zbl 0885.76030
[11] Cox, S. M., Leibovich, S., Moroz, I. M. & Tandon, A.1992aHopf bifurcations in Langmuir circulations. Physica D59, 226-254. · Zbl 0763.76023
[12] Cox, S. M., Leibovich, S., Moroz, I. M. & Tandon, A.1992bNonlinear dynamics in Langmuir circulations with O (2) symmetry. J. Fluid Mech.241, 669-704. · Zbl 0786.76040
[13] Craik, A. D. D.1977The generation of Langmuir circulations by an instability mechanism. J. Fluid Mech.81, 209-223. · Zbl 0358.76014
[14] Craik, A. D. D.1985Waves Interactions and Fluid Flows. Cambridge University Press. · Zbl 0581.76002
[15] Craik, A. D. D. & Leibovich, S.1976A rational model for Langmuir circulations. J. Fluid Mech.73, 401-426. · Zbl 0324.76014
[16] Crouch, J. D. & Herbert, T.1993A note on the calculation of Landau constants. Phys. Fluids A5, 283-285.
[17] Dangelmayr, G.1986Steady-state mode interactions in the presence of 0(2)-symmetry. Dyn. Stab. Syst.1, 159-185. · Zbl 0661.58022
[18] Deguchi, K. & Hall, P.2014The high-Reynolds-number asymptotic development of nonlinear equilibrium states in plane Couette flow. J. Fluid Mech.750, 99-112.
[19] Doelman, A. & Eckhaus, W.1991Periodic and quasi-periodic solutions of degenerate modulation equations. Physica D53, 249-266. · Zbl 0744.35058
[20] Eckhaus, W. & Iooss, G.1989Strong selection or rejection of spatially periodic patterns in degenerate bifurcations. Physica D39, 124-146. · Zbl 0677.76046
[21] Faller, A. J.1978Experiments with controlled Langmuir circulations. Science201, 618-620.
[22] Faller, A. J. & Caponi, E. A.1978Laboratory studies of wind-driven Langmuir circulations. J. Geophys. Res.83, 3617-3633.
[23] Farmer, D. & Li, M.1995Patterns of bubble clouds organized by Langmuir circulation. J. Phys. Oceanogr.25, 1426-1440.
[24] Fujimura, K. & Nagata, M.1998Degenerate 1 : 2 steady state mode interaction - MHD flow in a vertical slot. Physica D115, 377-400. · Zbl 0962.76643
[25] Gill, A. E.1982Atmosphere-Ocean Dynamics. Elsevier.
[26] Ginzburg, V. L. & Landau, L. D.1950On the theory of superconductivity. Zh. Eksp. Teor. Fiz.20, 1064-1082.
[27] Hall, P.1983The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech.130, 41-58. · Zbl 0515.76040
[28] Hall, P. & Smith, F.1988The nonlinear interaction of Görtler vortices and Tollmien-Schlichting waves in curved channel flows. Proc. R. Soc. Lond. A417, 255-282. · Zbl 0657.76047
[29] Hayes, D. T. & Phillips, W. R. C.2016An asymptotic study of instability to Langmuir circulation in shallow layers. Geophys. Astrophys. Fluid Dyn.110, 1-22.
[30] Hayes, D. T. & Phillips, W. R. C.2017Nonlinear steady states to Langmuir circulation in shallow layers: an asymptotic study. Geophys. Astrophys. Fluid Dyn.111, 65-90. · Zbl 1506.76042
[31] Herbert, T.1983On perturbation methods in nonlinear stability theory. J. Fluid Mech.126, 167-186. · Zbl 0517.76050
[32] Holm, D. D.1996The ideal Craik-Leibovich equation. Physica D98, 415-441. · Zbl 0899.76082
[33] Knobloch, E. & Luca, J. D.1990Amplitude equations for travelling wave convection. Nonlinearity3, 975-980. · Zbl 0717.35070
[34] Langmuir, I.1938Surface motion of water induced by wind. Science87, 119-123.
[35] Leibovich, S.1977Convective instability of stably stratified water in the ocean. J. Fluid Mech.82, 561-581.
[36] Leibovich, S.1980On wave-current interaction theories of Langmuir circulations. J. Fluid Mech.99, 715-724. · Zbl 0452.76013
[37] Leibovich, S.1983The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech.15, 391-427. · Zbl 0567.76034
[38] Leibovich, S.1997 Surface and near-surface motion of oil in the sea. Tech. Rep. Contract 14-35-0001-30612. Department of the Interior: Minerals Management Service.
[39] Leibovich, S. & Paolucci, S.1980The Langmuir circulation instability as a mixing mechanism in the upper ocean. J. Phys. Oceanogr.10, 186-207.
[40] Leibovich, S. & Tandon, A.19933-dimensional Langmuir circulation instability in a stratified layer. J. Geophys. Res.98, 16501-16507.
[41] Li, Q., Webb, A., Fox-Kemper, B., Craig, A., Danabasoglu, G., Large, W. G. & Vertenstein, M.2016Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Model.103, 145-160.
[42] Longuet-Higgins, M. S.1953Mass transport in water waves. Phil. Trans. R. Soc. Lond.245, 535-581. · Zbl 0050.20304
[43] Marmorino, G. O., Smith, G. B. & Lindemann, G. J.2005Infrared imagery of large-aspect-ratio Langmuir circulation. Cont. Shelf Res.25, 1-6.
[44] Maultsby, B.20122:1 Spatial resonance in Langmuir circulation. In WHOI 2012 Program in Geophysical Fluid Dynamics (ed. E.Knobloch & J.Weiss) pp. 334-361. National Technical Information Service.
[45] McWilliams, J. C., Sullivan, P. P. & Moeng, C.-H.1997Langmuir turbulence in the ocean. J. Fluid Mech.334, 1-30. · Zbl 0887.76029
[46] Melville, W. K., Shear, R. & Veron, F.1998Laboratory measurements of the generation and evolution of Langmuir circulations. J. Fluid Mech.364, 31-58. · Zbl 0948.76511
[47] Mizushima, J.1993Mechanism of mode selection in Rayleigh-Bénard convection with free rigid boundaries. Fluid Dyn. Res.11, 297-311.
[48] Mizushima, J. & Fujimura, K.1992Higher harmonic resonance of two-dimensional disturbances in Rayleigh-Bénard convection. J. Fluid Mech.234, 651-667. · Zbl 0744.76053
[49] Moroz, I. M. & Leibovich, S.1985Oscillatory and competing instabilities in a nonlinear model for Langmuir circulations. Phys. Fluids (1958-1988)28, 2050-2061. · Zbl 0574.76046
[50] Newell, A. C. & Whitehead, J. A.1969Finite bandwidth, finite amplitude convection. J. Fluid Mech.38, 279-303. · Zbl 0187.25102
[51] Pearson, B., Fox-Kemper, B., Bachman, S. D. & Bryan, F. O.2017Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model. Ocean Model.115, 42-58.
[52] Pham, K. G. & Suslov, S. A.2018On the definition of Landau constants in amplitude equations away from critical points. R. Soc. Open Sci.5, 180746.
[53] Phillips, W. R. C.1998aFinite-amplitude rotational waves in viscous shear flows. Stud. Appl. Maths101, 23-47. · Zbl 1136.76351
[54] Phillips, W. R. C.1998bOn the nonlinear instability of strong wavy shear to longitudinal vortices. In Nonlinear Instability, Chaos and Turbulence (ed. L.Debnath & D. N.Riahi), vol. 1, pp. 251-273. Comp. Mech. Publns.
[55] Phillips, W. R. C.2001On an instability to Langmuir circulations and the role of Prandtl and Richardson numbers. J. Fluid Mech.442, 335-358. · Zbl 1064.76055
[56] Phillips, W. R. C.2002Langmuir circulations beneath growing or decaying surface waves. J. Fluid Mech.469, 317-342. · Zbl 1152.76338
[57] Phillips, W. R. C.2015Drift and pseudomomentum in bounded turbulent shear flows. Phys. Rev. E92, 043003.
[58] Phillips, W. R. C. & Dai, A.2014On Langmuir circulation in shallow waters. J. Fluid Mech.743, 141-169. · Zbl 1325.86004
[59] Phillips, W. R. C., Dai, A. & Tjan, K. K.2010On Lagrangian drift in shallow-water waves on moderate shear. J. Fluid Mech.660, 221-239. · Zbl 1205.76063
[60] Plueddemann, A., Smith, J., Farmer, D., Weller, R., Crawford, W., Pinkel, R., Vagle, S. & Gnanadesikan, A.1996Structure and variability of Langmuir circulation during the surface waves processes program. J. Geophys. Res.21, 85-102.
[61] Porter, J. & Knobloch, E.2000Complex dynamics in the 1:3 spatial resonance. Physica D143, 138-168. · Zbl 0980.34034
[62] Porter, J. & Knobloch, E.2001New type of complex dynamics in the 1:2 spatial resonance. Physica D159, 125-154. · Zbl 0979.70017
[63] Prat, J., Mercader, I. & Knobloch, E.1998Resonant mode interactions in Rayleigh-Bénard convection. Phys. Rev. E58, 3145-3156.
[64] Proctor, M. R. E. & Jones, C. A.1988The interaction of two spatially resonant patterns in thermal convection. Part 1. Exact 1:2 resonance. J. Fluid Mech.188, 301-335. · Zbl 0649.76018
[65] Smith, J. A.1992Observed growth of Langmuir circulation. J. Geophys. Res.97, 5651-5664.
[66] Suslov, S. A. & Paolucci, S.1997Nonlinear analysis of convection flow in a tall vertical enclosure under non-Boussinesq conditions. J. Fluid Mech.344, 1-41. · Zbl 0898.76034
[67] Suslov, S. A. & Paolucci, S.2004Stability of non-Boussinesq convection via the complex Ginzburg-Landau model. Fluid Dyn. Res.35, 159-203. · Zbl 1073.76031
[68] Szeri, A. J.1996Langmuir circulations in Rodeo Lagoon. Mon. Weath. Rev.124, 341-342.
[69] Tandon, A. & Leibovich, S.1995Simulations of three-dimensional Langmuir circulation in water of constant density. J. Geophys. Res.100, 22613-22623.
[70] Thorpe, S. A.2004Langmuir circulation. Annu. Rev. Fluid Mech.36, 55-79. · Zbl 1076.76075
[71] Tsai, W.-T., Chen, S.-M. & Lu, G.-H.2015Numerical evidence of turbulence generated by non-breaking surface waves. J. Phys. Oceanogr.45, 174-180.
[72] Tsai, W.-T., Chen, S.-M., Lu, G.-H. & Garbe, C. S.2013Characteristics of interfacial signatures on a wind-driven gravity-capillary wave. J. Geophys. Res.118, 1715-1735.
[73] Tsai, W. T., Lu, G. H., Chen, J. R., Dai, A. & Phillips, W. R. C.2017On the formation of coherent vortices beneath non-breaking free-propagating surface waves. J. Phys. Oceanogr.47, 533-543.
[74] Watson, J.1960On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow. J. Fluid Mech.9, 371-389. · Zbl 0096.21103
[75] Zhang, Z., Chini, G. P., Julien, K. & Knobloch, E.2015Dynamic patterns in the reduced Craik-Leibovich equations. Phys. Fluids27, 046605. · Zbl 1326.76084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.