×

Emerging the dark sector from thermodynamics of cosmological systems with constant pressure. (English) Zbl 1328.83188

Summary: We investigate the thermodynamics of general fluids that have the constriction that their pressure is constant. We first consider the more general thermodynamic properties of this class of fluids finding the important result that for them adiabatic and isothermal processes should coincide. We therefore study their behaviors in curved space-times where local thermal equilibrium can be appealed. Thus, we show that this dark fluid degenerates with the dark sector of the \(\Lambda\)CDM model only in the case of adiabatic evolution. We demonstrate that, adding dissipative processes, a phantom behavior can occur and finally we further highlight that an arbitrary decomposition of the dark sector, into ad hoc dark matter and dark energy terms, may give rise to phantom dark energy, whereas the whole dark sector remains non-phantom.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology
80A10 Classical and relativistic thermodynamics
83C15 Exact solutions to problems in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Cervantes-Cota, J.L., Smoot, G.: Cosmology today—a brief review. AIP Conf. Proc. 1396, 28-52 (2011). arXiv:1107.1789 · Zbl 1264.83001 · doi:10.1063/1.3647524
[2] Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys D15, 1753-1936 (2006). hep-th/0603057 · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[3] Kunz, M.: The dark degeneracy: on the number and nature of dark components. Phys. Rev D80, 123001 (2009). astro-ph/0702615
[4] Hu, W., Eisenstein, D.J.: The structure of structure formation theories. Phys. Rev. D59, 083509 (1999). astro-ph/9809368
[5] Aviles, A., Cervantes-Cota, J.L.: The dark degeneracy and interacting cosmic components. Phys. Rev. D84, 083515 (2011). arXiv:1108.2457
[6] Luongo, O., Quevedo, H.: A unified dark energy model from a vanishing speed of sound with emergent cosmological constant. Int. J. Mod. Phys. D23, 1450012 (2014) · Zbl 1284.83187 · doi:10.1142/S0218271814500126
[7] Xu, L., Wang, Y., Noh, H.: Unified dark fluid with constant adiabatic sound speed and cosmic constraints. Phys. Rev. D85, 043003 (2012). arXiv:1112.3701
[8] Bielefeld, J., Caldwell, R.R., Linder, E.V.: Dark energy scaling from dark matter to acceleration. Phys. Rev. D90, 043015 (2014). arXiv:1404.2273
[9] Ballesteros, G., Lesgourgues, J.: Dark energy with non-adiabatic sound speed: initial conditions and detectability. JCAP 014, 1010 (2010). arXiv:1004.5509
[10] Piattella, O.F., Fabris, J.C., Bilic, N.: Note on the thermodynamics and the speed of sound of a scalar field. Class. Quant. Gravit. 31, 055006 (2014). arXiv:1309.4282 · Zbl 1292.83029 · doi:10.1088/0264-9381/31/5/055006
[11] Kamenshchik, A.Y., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B511, 265-268 (2001). gr-qc/0103004 · Zbl 0969.83556 · doi:10.1016/S0370-2693(01)00571-8
[12] Bento, M., Bertolami, O., Sen, A.: Generalized Chaplygin gas, accelerated expansion and dark energy matter unification. Phys. Rev. D66, 043507 (2002). gr-qc/0202064 · Zbl 1044.83025
[13] Bilic, N., Tupper, G.B., Viollier, R.D.: Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Phys. Lett. B535, 17-21 (2002). astro-ph/0111325 · Zbl 0995.83512 · doi:10.1016/S0370-2693(02)01716-1
[14] Fabris, J.C., Goncalves, S., de Sa Ribeiro, R.: Bulk viscosity driving the acceleration of the Universe. Gen. Relativ. Gravit. 38, 495-506 (2006). astro-ph/0503362 · Zbl 1093.83050 · doi:10.1007/s10714-006-0236-y
[15] Zimdahl, W., Schwarz, D.J., Balakin, A.B., Pavon, D.: Cosmic anti-friction and accelerated expansion. Phys. Rev. D64, 063501 (2001). astro-ph/0009353
[16] Avelino, A., Nucamendi, U.: Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe? JCAP 0904, 006 (2009). arXiv:0811.3253 · doi:10.1088/1475-7516/2009/04/006
[17] Li, B., Barrow, J.D.: Does bulk viscosity create a viable unified dark matter model? Phys. Rev. D79, 103521 (2009). arXiv:0902.3163
[18] Avelino, A., Nucamendi, U.: Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe. JCAP 1008, 009 (2010). arXiv:1002.3605 · doi:10.1088/1475-7516/2010/08/009
[19] Piattella, O.F., Fabris, J.C., Zimdahl, W.: Bulk viscous cosmology with causal transport theory. JCAP 1105, 029 (2011). arXiv:1103.1328 · doi:10.1088/1475-7516/2011/05/029
[20] Eckart, C.: The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Phys. Rev. 58, 919-924 (1940) · Zbl 0027.03107 · doi:10.1103/PhysRev.58.919
[21] Muller, I.: Zum paradoxon der Warmeleitungstheorie. Z. Phys. 198, 329 (1967) · Zbl 0143.23602 · doi:10.1007/BF01326412
[22] Israel, W.: Nonstationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100, 310-331 (1976) · doi:10.1016/0003-4916(76)90064-6
[23] Israel, W., Stewart, J.: Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 118, 341-372 (1979) · doi:10.1016/0003-4916(79)90130-1
[24] Pavon, D., Jou, D., Casas-Vazquez, J.: On a covariant formulation of dissipative phenomena. Ann. l’inst. Henri Poincar (A) 36, 79 (1982)
[25] Hiscock, W., Lindblom, L.: Stability and causality in dissipative relativistic fluids. Ann. Phys. 151, 466-496 (1983) · Zbl 0536.76126 · doi:10.1016/0003-4916(83)90288-9
[26] Lima, J., Alcaniz, J.S.: Thermodynamics and spectral distribution of dark energy. Phys. Lett. B600, 191 (2004). astro-ph/0402265 · doi:10.1016/j.physletb.2004.09.013
[27] Gonzalez-Diaz, P.F., Siguenza, C.L.: Phantom thermodynamics. Nucl. Phys. B697, 363-386 (2004). astro-ph/0407421 · doi:10.1016/j.nuclphysb.2004.07.020
[28] Pereira, S., Lima, J.: On phantom thermodynamics. Phys. Lett. B669, 266-270 (2008). arXiv:0806.0682 · doi:10.1016/j.physletb.2008.10.006
[29] Myung, Y.S.: On phantom thermodynamics with negative temperature. Phys. Lett. B671, 216-218 (2009). arXiv:0810.4385 · doi:10.1016/j.physletb.2008.12.011
[30] Silva, R., Goncalves, R., Alcaniz, J., Silva, H.: Thermodynamics and dark energy. Astron. Astrophys. 537, A11 (2012). arXiv:1104.1628 · Zbl 1264.85009 · doi:10.1051/0004-6361/201117707
[31] Aviles, A., Bastarrachea-Almodovar, A., Campuzano, L., Quevedo, H.: Extending the generalized Chaplygin gas model by using geometrothermodynamics. Phys. Rev. D86, 063508 (2012). arXiv:1203.4637
[32] Luongo, O., Quevedo, H.: Cosmographic study of the universe’s specific heat: a landscape for cosmology? Gen. Relativ. Gravit. 46, 1649 (2014). arXiv:1211.0626 · Zbl 1286.83104 · doi:10.1007/s10714-013-1649-z
[33] Silva, H., Silva, R., Gonalves, R., Zhu, Z.-H., Alcaniz, J.: General treatment for dark energy thermodynamics. Phys. Rev. D88, 127302 (2013). arXiv:1312.3216
[34] WMAP Collaboration, Komatsu, E., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538
[35] Planck Collaboration, Ade, P., et al.: Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076
[36] Chuang, C.-H., Prada, F., Beutler, F., Eisenstein, D.J., Escoffier, S., et al.: The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS and LOWZ anisotropic galaxy clustering. arXiv:1312.4889
[37] Caldwell, R.: A phantom menace? Phys. Lett. B545, 23-29 (2002). astro-ph/9908168 · doi:10.1016/S0370-2693(02)02589-3
[38] Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003). astro-ph/0302506 · doi:10.1103/PhysRevLett.91.071301
[39] Cheng, C., Huang, Q.G.: The dark side of the Universe after Planck. Phys. Rev. D 89, 043003 (2014). astro-ph/1306.4091
[40] Rest, A., et al.: Cosmological Constraints from Measurements of Type Ia Supernovae discovered during the first 1.5 years of the Pan-STARRS1 Survey. Astrophys. J. 795, 1, 44. astro-ph/1310.3828
[41] Shafer, D.L., Huterer, D.: Chasing the phantom: a closer look at Type Ia supernovae and the dark energy equation of state. Phys. Rev. D 89, 063510 (2014). astro-ph/1312.1688
[42] Xia, J.-Q., Li, H., Zhang, X.: Dark energy constraints after Planck. Phys. Rev. D 88, 063501 (2013). hep-lat/0602003
[43] Carroll, S.M., Hoffman, M., Trodden, M.: Can the dark energy equation-of-state parameter w be less than \[{-}1-1\]? Phys. Rev. D68, 023509 (2003). astro-ph/0301273
[44] Barrow, J.D.: Sudden future singularities. Class. Quant. Gravit. 21, L79-L82 (2004). gr-qc/0403084 · Zbl 1055.83027 · doi:10.1088/0264-9381/21/11/L03
[45] Cataldo, M., Cruz, N., Lepe, S.: Viscous dark energy and phantom evolution. Phys. Lett. B619, 5-10 (2005). hep-th/0506153 · doi:10.1016/j.physletb.2005.05.029
[46] Cruz, N., Lepe, S., Pena, F.: Dissipative generalized Chaplygin gas as phantom dark energy. Phys. Lett. B646, 177-182 (2007). gr-qc/0609013 · doi:10.1016/j.physletb.2006.12.070
[47] Barranco, J., Bernal, A., Nunez, D.: Dark matter equation of state from rotational curves of galaxies. arXiv:1301.6785
[48] Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1-23 (1989) · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[49] Liddle, A.R., Urena-Lopez, L.A.: Inflation, dark matter and dark energy in the string landscape. Phys. Rev. Lett. 97, 161301 (2006). astro-ph/0605205 · Zbl 1228.83137 · doi:10.1103/PhysRevLett.97.161301
[50] Reyes, L.M., Aguilar, J.E.M., Urena-Lopez, L.A.: Cosmological dark fluid from five-dimensional vacuum. Phys. Rev. D84, 027503 (2011). arXiv:1107.0345
[51] Grande, J., Pelinson, A., Sola, J.: Dark energy perturbations and cosmic coincidence. Phys. Rev. D79, 043006 (2009). arXiv:0809.3462
[52] Linder, E.V., Scherrer, R.J.: Aetherizing lambda: barotropic fluids as dark energy. Phys. Rev. D80, 023008 (2009). arXiv:0811.2797
[53] Novosyadlyj, B., Sergijenko, O., Apunevych, S., Pelykh, V.: Properties and uncertainties of scalar field models of dark energy with barotropic equation of state. Phys. Rev. D82, 103008 (2010). arXiv:1008.1943
[54] Novosyadlyj, B., Sergijenko, O., Durrer, R., Pelykhc, V.: Constraining the dynamical dark energy parameters: Planck 2013 vs WMAP9. J. Cosmol. Astropart. Phys. 05, 030 (2014). arXiv:1312.6579 · doi:10.1088/1475-7516/2014/05/030
[55] Sergijenko, O., Novosyadlyj, B.: Perturbed dark energy: classical scalar field versus tachyon. Phys. Rev. D 80, 083007 (2009). arXiv:0904.1583
[56] Xu, L., Wang, Y., Noh, Hyerim: Unified dark fluid with constant adiabatic sound speed and cosmic constraints. Phys. Rev. D 85, 043003 (2012). arXiv:1112.3701
[57] Wheeler, T.D., Stroock, A.D.: The transpiration of water at negative pressures in a synthetic tree. Nature 455(7210), 208 (2008) · doi:10.1038/nature07226
[58] Caupin, F., Arvengas, A., Davitt, K., Azouzi, M.E.M., Shmulovich, K.I., Ramboz, C., Sessoms, D.A., Stroock, A.D.: Exploring water and other liquids at negative pressure. J. Phys. Condens. Matter 24, 284110 (2012) · doi:10.1088/0953-8984/24/28/284110
[59] Stanley, H., Barbosa, M., Mossa, S., Netz, P., Sciortino, F., Starr, F., Yamada, M.: Statistical physics and liquid water at negative pressures. Phys. A Stat. Mech. Appl. 315, 281 (2002) · doi:10.1016/S0378-4371(02)01536-4
[60] Quevedo, H.: Geometrothermodynamics. J. Math. Phys. 48, 013506 (2007). physics/0604164 · Zbl 1121.80011 · doi:10.1063/1.2409524
[61] Vazquez, A., Quevedo, H., Sanchez, A.: Thermodynamic systems as extremal hypersurfaces. J. Geom. Phys. 60, 1942-1949 (2010). arXiv:1101.3359 · Zbl 1202.37032 · doi:10.1016/j.geomphys.2010.08.001
[62] Krasinski, A., Quevedo, H., Sussman, R.: On the thermodynamical interpretation of perfect fluid solutions of the Einstein equations with no symmetry. J. Math. Phys. 38, 2602-2610 (1997) · Zbl 0874.53067 · doi:10.1063/1.532000
[63] Hernandez, F.J., Quevedo, H.: Entropy and anisotropy. Gen. Relativ. Gravit. 39, 1297-1309 (2007). gr-qc/0701125 · Zbl 1181.83228 · doi:10.1007/s10714-007-0456-9
[64] Weinberg, S.: Entropy generation and the survival of protogalaxies in an expanding universe. Astrophys. J. 168, 175 (1971) · doi:10.1086/151073
[65] Maartens, R.: Causal thermodynamics in relativity. astro-ph/9609119
[66] Misner, C., Thorne, K., Wheeler, J.: Gravitation. W.H. Freeman and Company, London (1973)
[67] Israel, W., Stewart, J.: Thermodynamics of nonstationary and transient effects in a relativistic gas. Phys. Lett. A 58(4), 213-215 (1976) · doi:10.1016/0375-9601(76)90075-X
[68] Astashenok, A.V., Odintsov, S.D.: Confronting dark energy models mimicking \[\Lambda\] ΛCDM epoch with observational constraints: future cosmological perturbations decay or future Rip? Phys. Lett. B718, 1194-1202 (2013). arXiv:1211.1888 · doi:10.1016/j.physletb.2012.12.058
[69] Pavon, D., Zimdahl, W.: A thermodynamic characterization of future singularities? Phys. Lett. B708, 217-220 (2012). arXiv:1201.6144 · doi:10.1016/j.physletb.2012.01.074
[70] Frampton, P.H., Ludwick, K.J., Scherrer, R.J.: The little rip. Phys. Rev. D84, 063003 (2011). arXiv:1106.4996
[71] Brevik, I., Elizalde, E., Nojiri, S., Odintsov, S.: Viscous little rip cosmology. Phys. Rev. D84, 103508 (2011). arXiv:1107.4642
[72] Frampton, P.H., Ludwick, K.J., Nojiri, S., Odintsov, S.D., Scherrer, R.J.: Models for little rip dark energy. Phys. Lett. B708, 204-211 (2012). arXiv:1108.0067 · doi:10.1016/j.physletb.2012.01.048
[73] Astashenok, A.V., Nojiri, S., Odintsov, S.D., Yurov, A.V.: Phantom cosmology without big rip singularity. Phys. Lett. B709, 396-403 (2012). arXiv:1201.4056 · doi:10.1016/j.physletb.2012.02.039
[74] Maartens, R.: Dissipative cosmology. Class. Quant. Gravit. 12, 1455-1465 (1995) · Zbl 0825.83004 · doi:10.1088/0264-9381/12/6/011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.