×

Numerically modeling stochastic Lie transport in fluid dynamics. (English) Zbl 1454.76064

Summary: We present a numerical investigation of stochastic transport in ideal fluids. According to D. D. Holm [Proc. A, R. Soc. Lond. 471, No. 2176, Article ID 20140963, 19 p. (2015; Zbl 1371.35219)] and C. J. Cotter et al. [Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 473, No. 2205, Article ID 20170388, 10 p. (2017; Zbl 1402.76101)], the principles of transformation theory and multitime homogenization, respectively, imply a physically meaningful, data-driven approach for decomposing the fluid transport velocity into its drift and stochastic parts for a certain class of fluid flows. In the current paper, we develop a new methodology to implement this velocity decomposition and then numerically integrate the resulting stochastic partial differential equation using a finite element discretization for incompressible two-dimensional (2D) Euler fluid flows. The new methodology tested here is found to be suitable for coarse-graining in this case. Specifically, we perform uncertainty quantification tests of the velocity decomposition of Cotter, Gottwald, and Holm, by comparing ensembles of coarse grid realizations of solutions of the resulting stochastic partial differential equation with the “true solutions” of the deterministic fluid partial differential equation, computed on a refined grid. The time discretization used for approximating the solution of the stochastic partial differential equation is shown to be consistent. We include comprehensive numerical tests that confirm the non-Gaussianity of the streamfunction, velocity, and vorticity fields in the case of incompressible 2D Euler fluid flows.

MSC:

76M35 Stochastic analysis applied to problems in fluid mechanics
35Q31 Euler equations
76B99 Incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, {\it PETSc Users Manual}, Tech. report ANL-95/11, Revision 3.7, Argonne National Laboratory, 2016.
[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, {\it Efficient Management of Parallelism in Object Oriented Numerical Software Libraries}, Birkhäuser, Basel, 1997, pp. 163-202. · Zbl 0882.65154
[3] J. Beale, T. Kato, and A. Majda, {\it Remarks on the breakdown of smooth solutions for the} 3{\it -D Euler equations}, Comm. Math. Phys., 94 (1984), pp. 61-66. · Zbl 0573.76029
[4] E. Bernsen, O. Bokhove, and J. J. W. van der Vegt, {\it A (dis)continuous finite element model for generalized} 2{\it D vorticity dynamics}, J. Comput. Phys., 211 (2006), pp. 719-747. · Zbl 1138.76380
[5] A. Beskos, D. Crisan, A. Jasra, K. Kamatani, and Y. Zhou, {\it A stable particle filter for a class of high-dimensional state-space models}, Adv. Appl. Probab., 49 (2017), pp. 24-48, . · Zbl 1426.62274
[6] Z. Brzeźniak, F. Flandoli, and M. Maurelli, {\it Existence and uniqueness for stochastic 2D Euler flows with bounded vorticity}, Arch. Ration. Mech. Anal., 221 (2016), pp. 107-142. · Zbl 1342.35231
[7] C. J. Cotter, G. A. Gottwald, and D. D. Holm, {\it Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics}, Proc. A, 473, (2017), . · Zbl 1402.76101
[8] D. Crisan, F. Flandoli, and D. D. Holm, {\it Solution properties of a 3D stochastic Euler fluid equation}, J. Nonlinear Sci. (2017), . · Zbl 1433.60051
[9] D. Crisan and O. Lang, {\it Well-posedness for 2D Euler equations with stochastic Lie transport noise}, in preparation, 2019. · Zbl 1520.60033
[10] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, {\it Parallel distributed computing using Python}, Adv. Water Resources, 34 (2011), pp. 1124-1139, .
[11] F. Gay-Balmaz and D. D. Holm, {\it Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows}, J. Nonlinear Sci., 28 (2018), pp. 873-904, . · Zbl 1431.37068
[12] S. Gottlieb, {\it On high order strong stability preserving Runge-Kutta and multi step time discretizations}, J. Sci. Comput., 25 (2005), pp. 105-128. · Zbl 1203.65166
[13] A. Hannachi, {\it A primer for EOF analysis of climate data}, (2004).
[14] A. Hannachi, I. Jolliffe, and D. Stephenson, {\it Empirical orthogonal functions and related techniques in atmospheric science: A review}, Internat. J. Climatology, 27 (2007), pp. 1119-1152, .
[15] D. D. Holm, {\it Geometric Mechanics}, 2nd ed., World Scientific, River Edge, NJ, 2011. · Zbl 1227.70001
[16] D. D. Holm, {\it Variational principles for stochastic fluids}, Proc. A. 471 (2015), . · Zbl 1371.35219
[17] D. D. Holm, J. Marsden, and T. Ratiu, {\it The Euler-Poincaré equations and semidirect products with applications to continuum theories}, Adv. Math., 137 (1998), pp. 1-81. · Zbl 0951.37020
[18] D. D. Holm, T. Schmah, and C. Stoica, {\it Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions}, Oxford University Press, Oxford, UK, 2009. · Zbl 1175.70001
[19] I. Koch, {\it Analysis of Multivariate and High-Dimensional Data}, Cambridge Ser. Stat. Probab. Math. 32, Cambridge University Press, Cambridge, UK, 2013.
[20] A. Lang, {\it A Lax equivalence theorem for stochastic differential equations}, J. Comput. Appl. Math., 234 (2010), pp. 3387-3396. · Zbl 1198.65032
[21] J. Marsden and T. Ratiu, {\it Introduction to Mechanics and Symmetry}, 2nd ed., Springer, New York, 1999. · Zbl 0933.70003
[22] E. Mémin, {\it Fluid flow dynamics under location uncertainty}, Geophys. Astrophys. Fluid Dyn., 108 (2014), pp. 119-146. · Zbl 07657767
[23] R. Mikulevicius and B. Rozovskii, {\it Stochastic Navier-Stokes equations for turbulent flows}, SIAM J. Math. Anal., 35 (2004), pp. 1250-1310. · Zbl 1062.60061
[24] E. Pardoux, {\it Stochastic Partial Differential Equations. Lectures given in Fudan University, Shanghai}, Marseille, France, 2007.
[25] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly, {\it Firedrake: Automating the finite element method by composing abstractions}, ACM Trans. Math. Software, 43 (2016), 24, . · Zbl 1396.65144
[26] K.-U. Schaumlöffel, {\it White noise in space and time and the cylindrical Wiener process}, Stoch. Anal. Appl., 6 (1988), pp. 81-89. · Zbl 0658.60068
[27] Z.-S. She, {\it Intermittency and non-Gaussian statistics in turbulence}, Fluid Dyn. Res., 8 (1991), .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.