×

On two families of bivariate distributions with exponential marginals: aggregation and capital allocation. (English) Zbl 1348.91137

Summary: In this paper, we consider two main families of bivariate distributions with exponential marginals for a couple of random variables \((X_1, X_2)\). More specifically, we derive closed-form expressions for the distribution of the sum \(S = X_1 + X_2\), the TVaR of \(S\) and the contributions of each risk under the TVaR-based allocation rule. The first family considered is a subset of the class of bivariate combinations of exponentials, more precisely, bivariate combinations of exponentials with exponential marginals. We show that several well-known bivariate exponential distributions are special cases of this family. The second family we investigate is a subset of the class of bivariate mixed Erlang distributions, namely bivariate mixed Erlang distributions with exponential marginals. For this second class of distributions, we propose a method based on the compound geometric representation of the exponential distribution to construct bivariate mixed Erlang distributions with exponential marginals. Notably, we show that this method not only leads to Moran-Downton’s bivariate exponential distribution, but also to a generalization of this bivariate distribution. Moreover, we also propose a method to construct bivariate mixed Erlang distributions with exponential marginals from any absolutely continuous bivariate distributions with exponential marginals. Inspired from [S. C. K. Lee and X. S. Lin, Astin Bull. 42, No. 1, 153–180 (2012; Zbl 1277.62255)], we show that the resulting bivariate distribution approximates the initial bivariate distribution and we highlight the advantages of such an approximation.

MSC:

91B30 Risk theory, insurance (MSC2010)
60E05 Probability distributions: general theory
62H05 Characterization and structure theory for multivariate probability distributions; copulas
62P05 Applications of statistics to actuarial sciences and financial mathematics

Citations:

Zbl 1277.62255

Software:

Excel
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Artzner, P.; Delbaen, F.; Eber, J.-M.; Heath, D., Coherent measures of risk, Math. Finance, 9, 3, 203-228 (1999) · Zbl 0980.91042
[2] Asmussen, S.; Bladt, M., Renewal theory and queueing algorithms for matrix-exponential distributions, (Alfa, A.; Chakravarthy, S. R., Matrix-Analytic Methods in Stochastic Models (1997), Marcel Dekker Inc.: Marcel Dekker Inc. New York), 313-341 · Zbl 0872.60064
[3] Babier, J.; Chan, B., Approximation of ruin probability by di-atomic or di-exponential distribution, ASTIN Bull., 22, 2, 235-246 (1992)
[4] Balakrishnan, N.; Lai, C.-D., Continuous Bivariate Distributions (2009), Springer: Springer New York · Zbl 1267.62028
[5] Bargès, M.; Cossette, H.; Marceau, E., TVaR-based capital allocation with copulas, Insurance Math. Econom., 45, 3, 348-361 (2009) · Zbl 1231.91141
[6] Bladt, M.; Nielsen, B. F., Multivariate matrix-exponential distributions, Stoch. Models, 26, 1-26 (2010) · Zbl 1196.60021
[7] Bladt, M.; Nielsen, B. F., On the construction of bivariate exponential distributions with an arbitrary correlation coefficient, Stoch. Models, 26, 295-308 (2010) · Zbl 1197.60005
[8] Chadjiconstantinidis, S.; Vrontos, S., On a renewal risk process with dependence under a Farlie-Gumbel-Morgenstern copula, Scand. Actuar. J., 1, 1-34 (2013)
[9] Chan, B., Ruin probability for translated combination of exponential claims, ASTIN Bull., 20, 113-114 (1990)
[10] Chiragiev, A.; Landsman, Z., Multivariate Pareto portfolios: Tce-based capital allocation and divided differences, Scand. Actuar. J., 4, 261-280 (2007) · Zbl 1164.91028
[11] Cossette, H.; Côté, M.-P.; Marceau, E.; Moutanabbir, K., Risk measures and capital allocation using the Farlie-Gumbel-Morgenstern Copula, Insurance Math. Econom., 52, 3, 560-572 (2013) · Zbl 1284.60027
[12] Cossette, H.; Gaillardetz, P.; Marceau, E.; Rioux, J., On two dependent individual risk models, Insurance Math. Econom., 30, 153-166 (2002) · Zbl 1055.91044
[13] Cossette, H.; Mailhot, M.; Marceau, E., TVaR-based capital allocation for multivariate compound distributions, Insurance Math. Econom., 50, 2, 247-256 (2012) · Zbl 1235.91086
[14] Cossette, H.; Marceau, E.; Marri, F., Analysis of ruin measures for the classical compound Poisson risk model with dependence, Scand. Actuar. J., 3, 221-245 (2010) · Zbl 1226.91024
[15] Denuit, M.; Dhaene, J.; Goovaerts, M. J.; Kaas, R., Actuarial Theory for Dependent Risks: Measures, Orders and Models (2005), Wiley: Wiley New York
[16] Dhaene, J.; Henrard, L.; Landsman, Z.; Vandendorpe, A.; Vanduffel, S., Some results on the CTE-based capital allocation rule, Insurance Math. Econom., 42, 2, 855-863 (2008) · Zbl 1152.91577
[17] Downton, F., Bivariate exponential distributions in reliability theory, J. Roy. Statist. Soc. Ser. B, 32, 3, 408-417 (1970) · Zbl 0226.62101
[18] Drouet-Mari, D.; Kotz, S., Correlation and Dependence (2001), Imperial College Press: Imperial College Press London · Zbl 0977.62004
[19] Dufresne, D., Fitting combinations of exponential to probability distributions, Appl. Stoch. Models Bus. Ind., 23, 23-48 (2007) · Zbl 1142.60321
[20] Dufresne, F.; Gerber, H. U., The probability and severity of ruin for combination of exponential claim amount distribution and their translations, Insurance Math. Econom., 7, 75-80 (1988) · Zbl 0637.62101
[21] Dufresne, F.; Gerber, H. U., Rational ruin problems—a note for the teacher, Insurance Math. Econom., 10, 21-29 (1991) · Zbl 0723.62066
[22] Furman, E.; Landsman, Z., Risk capital decomposition for a multivariate dependent gamma portfolio, Insurance Math. Econom., 37, 3, 635-649 (2005) · Zbl 1129.91025
[23] Furman, E.; Landsman, Z., Economic capital allocations for non-negative portfolios of dependent risks, ASTIN Bull., 38, 1, 601-619 (2008) · Zbl 1274.91379
[24] Genest, C.; Marceau, E.; Mesfioui, M., Compound Poisson approximations of individual models with dependent risks, Insurance Math. Econom., 32, 73-81 (2003) · Zbl 1055.91050
[25] Genest, C.; Nešlehová, J., A primer on copulas for count data, ASTIN Bull., 37, 475-515 (2007) · Zbl 1274.62398
[26] Gerber, H. U.; Shiu, E. S.W., The time value of ruin in a Sparre Andersen model, N. Am. Actuar. J., 9, 2, 49-84 (2005) · Zbl 1085.62508
[27] Huang, J. S.; Kotz, S., Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb, Metrika, 49, 135-145 (1999) · Zbl 1093.62514
[28] Iliopoulos, G., Estimation of parametric functions in Downton’s bivariate exponential distribution, J. Statist. Plann. Inference, 117, 2, 169-184 (2003) · Zbl 1021.62014
[29] Joe, H., Multivariate Models and Dependence Concepts (1997), Chapman and Hall: Chapman and Hall London · Zbl 0990.62517
[30] Johnson, N.; Kotz, S.; Baladrishnan, N., Discrete Multivariate Distributions (1997), John Wiley: John Wiley New York
[31] Kibble, W. F., A two-variate gamma type distribution, Sankhyā, 5, 2, 137-150 (1941), Proceedings of the Indian Statistical Conference 1940 (1941) · Zbl 0063.03231
[32] Kocherlakota, S.; Kocherlakota, K., Bivariate Discrete Distributions (1992), Marcel Dekker: Marcel Dekker New York · Zbl 0794.62002
[33] Kotz, S.; Balakrishnan, N.; Johnson, N. L., (Continuous Multivariate Distributions, Vol. 1, Models and Applications (2004), Wiley: Wiley New York)
[34] Krishnamoorthy, A. S.; Parthasarathy, M., A multivariate gamma-type distribution, Ann. Math. Statist., 22, 4, 549-557 (1951) · Zbl 0045.07102
[35] Landsman, Z. M.; Valdez, E. A., Tail conditional expectations for elliptical distributions, N. Am. Actuar. J., 7, 4, 55-71 (2003) · Zbl 1084.62512
[36] Langenbucher, F., Handling of computational in vitro/in vivo correlation problems by Microsoft Excel II. Distribution functions and moments, Eur. J. Pharm. Biopharm., 55, 77-84 (2003)
[37] Lee, M-L. T., Properties and applications of the Sarmanov family of bivariate distributions, Comm. Statist. Theory Methods, 25, 1207-1222 (1996) · Zbl 0875.62205
[38] Lee, S. C.K.; Lin, X. S., Modeling dependent risks with multivariate Erlang mixtures, ASTIN Bull., 42, 1, 153-180 (2012) · Zbl 1277.62255
[39] Marceau, E., Modélisation et Évaluation Quantitative des Risques en Actuariat—Modèles sur une Période (2013), Springer-Verlag: Springer-Verlag Paris · Zbl 1264.91002
[40] Marceau, E., On the discrete-time compound renewal risk model with dependence, Insurance Math. Econom., 44, 245-259 (2009) · Zbl 1167.91013
[41] Marshall, A. W.; Olkin, I., Multivariate exponential and geometric distributions with limited memory, J. Multivariate Anal., 53, 1, 110-125 (1995) · Zbl 0877.62049
[42] McNeil, A. J.; Frey, R.; Embrechts, P., Quantitative Risk Management (2005), Princeton University Press: Princeton University Press Princeton · Zbl 1089.91037
[43] Moran, P. A.P., Testing for correlation between non-negative variates, Biometrika, 54, 385-394 (1967) · Zbl 0166.15101
[44] Nadarajah, S.; Kotz, S., Sums, products, and ratios for Downton’s bivariate exponential distribution, Stoch. Environ. Res. Risk Assess., 20, 3, 164-170 (2006)
[45] Nelsen, R. B., (An Introduction to Copulas. An Introduction to Copulas, Springer Series in Statistics (2006), Springer: Springer New York) · Zbl 1152.62030
[46] Panjer, H. H., Measurement of risk, solvency requirements and allocation of capital within financial conglomerates. Research Report 01 15 (2002), Institute of Insurance and Pension Research, University of Waterloo
[47] Sarmanov, I. O., Generalized normal correlation two dimensional Fréchet classes, Sov. Math. Dokl., 7, 596-599 (1966), English translation: Russian original in Dokl. Akad. Nauk. SSR 168 (1966), 32-35
[49] Tijms, H., Stochastic Models: An Algorithm Approach (1994), John Wiley: John Wiley Chiester
[50] Trivedi, P. K.; Zimmer, D. M., Copula modeling: An introduction for practitioners, Found. Trends Econom., 1, 1-111 (2005) · Zbl 1195.91130
[51] Wang, M., Capital allocation based in the tail covariance premium adjusted, Insurance Math. Econom., 57, 125-131 (2014) · Zbl 1304.91135
[52] Willmot, G. E.; Woo, J.-K., On some properties of a class of multivariate Erlang mixtures with insurance applications, ASTIN Bull., 45, 151-173 (2015) · Zbl 1390.62092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.