×

zbMATH — the first resource for mathematics

Quantum unitary dynamics in cosmological spacetimes. (English) Zbl 1360.83087
Summary: We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.

MSC:
83F05 Cosmology
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T20 Quantum field theory on curved space or space-time backgrounds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Corichi, A.; Cortez, J.; Mena Marugán, G. A.; Velhinho, J. M., Classical Quantum Gravity, 23, 6301, (2006) · Zbl 1117.83025
[2] Cortez, J.; Mena Marugán, G. A.; Velhinho, J. M., Phys. Rev. D, 75, (2007)
[3] Cortez, J.; Mena Marugán, G. A.; Serôdio, R.; Velhinho, J. M., Phys. Rev. D, 79, (2009)
[4] Cortez, J.; Mena Marugán, G. A.; Velhinho, J. M., Phys. Rev. D, 81, (2010)
[5] Cortez, J.; Mena Marugán, G. A.; Olmedo, J.; Velhinho, J. M., Classical Quantum Gravity, 28, (2011)
[6] Cortez, J.; Mena Marugán, G. A.; Olmedo, J.; Velhinho, J. M., Phys. Rev. D, 86, (2012)
[7] Cortez, J.; Mena Marugán, G. A.; Olmedo, J.; Velhinho, J. M., Phys. Rev. D, 83, (2011)
[8] Castelló Gomar, L.; Cortez, J.; Martín-de Blas, D.; Mena Marugán, G. A.; Velhinho, J. M., J. Cosmol. Astropart. Phys., 11, 001, (2012)
[9] Fulling, S. A., Aspects of quantum field theory in curved spacetime, (1989), Cambridge University Press Cambridge · Zbl 0677.53081
[10] Birrell, N. D.; Davies, P. C.W., Quantum fields in curved space, (1982), Cambridge University Press Cambridge · Zbl 0476.53017
[11] Ashtekar, A.; Agullo, I., Phys. Rev. D, 91, (2015)
[12] Wald, R. M., Quantum field theory in curved spacetime and black hole thermodynamics, (1994), Chicago University Press Chicago · Zbl 0842.53052
[13] Lüders, C.; Roberts, J. E., Comm. Math. Phys., 134, 29, (1990)
[14] Kay, B. S., Comm. Math. Phys., 62, 55, (1978)
[15] Baez, J. C.; Segal, I. E.; Zhou, Z., Introduction to algebraic and constructive quantum field theory, (1992), Princeton University Press Princeton · Zbl 0760.46061
[16] Ashtekar, A.; Magnon, A., Proc. R. Soc. (London) A, 346, 375, (1975)
[17] Ashtekar, A.; Magnon-Ashtekar, A., Pramana, 15, 107, (1980)
[18] Floreanini, R.; Hill, C. T.; Jackiw, R., Ann. Phys., 175, 345, (1987)
[19] Wald, R. M., Ann. Phys., 118, 490, (1979)
[20] Dimock, J., J. Math. Phys., 20, 2549, (1979)
[21] Fulling, S. A., Gen. Rel. Grav., 10, 807, (1979)
[22] Parker, L., Phys. Rev. Lett., 21, 562, (1968)
[23] Parker, L., Phys. Rev., 183, 1057, (1969)
[24] Parker, L.; Fulling, S. A., Phys. Rev. D, 9, 341, (1974)
[25] Agullo, I.; Ashtekar, A.; Nelson, W., Classical Quantum Gravity, 30, (2013)
[26] S. Vitenti, Unitary evolution, canonical variables and vacuum choice for general quadratic Hamiltonians in spatially homogeneous and isotropic space-times, arXiv:1505.01541.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.