×

zbMATH — the first resource for mathematics

Unitarity bounds for gauged axionic interactions and the Green-Schwarz mechanism. (English) Zbl 1189.81143
Summary: We analyze the effective actions of anomalous models in which a four-dimensional version of the Green-Schwarz mechanism is invoked for the cancellation of the anomalies, and we compare it with those models in which gauge invariance is restored by the presence of a Wess-Zumino term. Some issues concerning an apparent violation of unitarity of the mechanism, which requires Dolgov-Zakharov poles, are carefully examined, using a class of amplitudes studied in the past by Bouchiat-Iliopoulos-Meyer (BIM), and elaborating on previous studies. In the Wess-Zumino case we determine explicitly the unitarity bound using a realistic model of intersecting branes (the Madrid model) by studying the corresponding BIM amplitudes. This is shown to depend significantly on the Stückelberg mass and on the coupling of the extra anomalous gauge bosons and allows one to identify standard-model-like regions (which are anomaly-free) from regions where the growth of certain amplitudes is dominated by the anomaly, separated by an inflection point, which could be studied at the LHC. The bound can even be around 5-10 TeV for a Z’ mass around 1 TeV and varies sensitively with the anomalous coupling. The results for the WZ case are quite general and apply to all the models in which an axion-like interaction is introduced as a generalization of the Peccei-Quinn mechanism, with a gauged axion.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971) · doi:10.1016/0370-2693(71)90582-X
[2] M.B. Green, J.H. Schwarz, Phys. Lett. B 149, 117 (1984) · doi:10.1016/0370-2693(84)91565-X
[3] M.B. Green, J.H. Schwarz, Nucl. Phys. B 255, 93 (1985) · doi:10.1016/0550-3213(85)90130-0
[4] M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)
[5] J. Preskill, Ann. Phys. 210, 323 (1991) · doi:10.1016/0003-4916(91)90046-B
[6] C. Corianò, N. Irges, Phys. Lett. B 651, 298 (2007) · doi:10.1016/j.physletb.2007.06.022
[7] C. Adam, Phys. Rev. D 56, 5135 (1997) · doi:10.1103/PhysRevD.56.5135
[8] C. Corianò, N. Irges, E. Kiritsis, Nucl. Phys. B 746, 77 (2006) · Zbl 1178.81218 · doi:10.1016/j.nuclphysb.2006.04.009
[9] N. Irges, S. Lavignac, P. Ramond, Phys. Rev. D 58, 035003 (1998) · doi:10.1103/PhysRevD.58.035003
[10] E. Kiritsis, Fortschr. Phys. 52, 200 (2004) · Zbl 1037.83019 · doi:10.1002/prop.200310120
[11] I. Antoniadis, E. Kiritsis, J. Rizos, T. Tomaras, Nucl. Phys. B 660, 81 (2003) · Zbl 01914463 · doi:10.1016/S0550-3213(03)00256-6
[12] I. Antoniadis, E. Kiritsis, T. Tomaras, Phys. Lett. B 486, 186 (2000) · Zbl 1050.81721 · doi:10.1016/S0370-2693(00)00733-4
[13] C. Corianò, N. Irges, S. Morelli, Nucl. Phys. B 789, 133 (2008) · Zbl 05214492 · doi:10.1016/j.nuclphysb.2007.07.027
[14] R. Armillis, C. Corianò, M. Guzzi, JHEP 05, 015 (2008) · doi:10.1088/1126-6708/2008/05/015
[15] C. Corianò, N. Irges, S. Morelli, JHEP 0707, 008 (2007) · doi:10.1088/1126-6708/2007/07/008
[16] L.E. Ibáñez, F. Marchesano, R. Rabadán, JHEP 0111, 002 (2001)
[17] L.E. Ibáñez, R. Rabadán, A. Uranga, Nucl. Phys. B 542, 112 (1999) · Zbl 0942.81065 · doi:10.1016/S0550-3213(98)00791-3
[18] A. Andrianov, A. Bassetto, R. Soldati, Phys. Rev. Lett. 63, 1554 (1989) · doi:10.1103/PhysRevLett.63.1554
[19] A. Andrianov, A. Bassetto, R. Soldati, Phys. Rev. D 44, 2602 (1991) · doi:10.1103/PhysRevD.44.2602
[20] A. Andrianov, A. Bassetto, R. Soldati, Phys. Rev. D 47, 4801 (1993) · doi:10.1103/PhysRevD.47.4801
[21] C. Fosco, R. Montemayor, Phys. Rev. D 47, 4798 (1993) · doi:10.1103/PhysRevD.47.4798
[22] R.D. Peccei, H.R. Quinn, Phys. Rev. D 16, 1791 (1977) · doi:10.1103/PhysRevD.16.1791
[23] M. Srednicki, in: Minneapolis 2002, Continuous Advances in QCD, p. 509 [hep-th/0210172]
[24] C. Bouchiat, J. Iliopoulos, P. Meyer, Phys. Lett. B 38, 519 (1972) · doi:10.1016/0370-2693(72)90532-1
[25] P. Federbush, hep-th/9606110
[26] P. Anastasopoulos, M. Bianchi, E. Dudas, E. Kiritsis, JHEP 0611, 057 (2006) · doi:10.1088/1126-6708/2006/11/057
[27] A.D. Dolgov, V.I. Zakharov, Nucl. Phys. B 27, 525 (1971) · doi:10.1016/0550-3213(71)90264-1
[28] L. Rosenberg, Phys. Rev. 129, 2786 (1963) · Zbl 0106.20804 · doi:10.1103/PhysRev.129.2786
[29] A.R. White, private communication and work in preparation
[30] B.L. Ioffe, Int. J. Mod. Phys. A 21, 6249 (2006) · Zbl 1117.81356 · doi:10.1142/S0217751X06035051
[31] N.N. Achasov, Phys. Lett. B 287, 213 (1992) · doi:10.1016/0370-2693(92)91902-L
[32] W.-M. Yao et al., J. Phys. G 33, 1 (2006) · doi:10.1088/0954-3899/33/1/001
[33] Particle Data Group, http://pdg.lbl.gov/
[34] A. De Angelis, O. Mansutti, M. Roncadelli, Phys. Rev. D 76, 121301 (2007) · doi:10.1103/PhysRevD.76.121301
[35] A. De Angelis, O. Mansutti, M. Roncadelli, Phys. Lett. B 659, 847 (2008) · doi:10.1016/j.physletb.2007.12.012
[36] D.M. Ghilencea, L.E. Ibáñez, N. Irges, F. Quevedo, JHEP 0208, 016 (2002) · Zbl 1226.81191 · doi:10.1088/1126-6708/2002/08/016
[37] A. Cafarella, C. Corianò, M. Guzzi, 0803.0462 [hep-ph]
[38] A. Cafarella, C. Corianò, M. Guzzi, http://www.le.infn.it/candia/
[39] P. Langacker, 0801.1345 [hep-ph]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.