Cafarella, Alessandro; Corianó, Claudio The kinetic interpretation of the DGLAP equation, its Kramers-Moyal expansion and positivity of helicity distributions. (English) Zbl 1081.81564 Int. J. Mod. Phys. A 20, No. 20-21, 4863-4897 (2005). MSC: 81V05 Strong interaction, including quantum chromodynamics 81T17 Renormalization group methods applied to problems in quantum field theory 81S25 Quantum stochastic calculus 82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) Keywords:Renormalization group equation; perturbative QCD; parton distributions PDF BibTeX XML Cite \textit{A. Cafarella} and \textit{C. Corianó}, Int. J. Mod. Phys. A 20, No. 20--21, 4863--4897 (2005; Zbl 1081.81564) Full Text: DOI References: [1] Collins J. C., Phys. Rev. 39 pp 1398– [2] Bourrely C., Phys. Lett. 420 pp 375– · doi:10.1016/S0370-2693(97)01538-4 [3] Boyanovsky D., Phys. Rev. 65 pp 045014– [4] Baaquie B. E., Physica 334 pp 531– · doi:10.1016/j.physa.2003.10.080 [5] DOI: 10.1103/RevModPhys.56.579 · doi:10.1103/RevModPhys.56.579 [6] Gluck M., Eur. Phys. J. 5 pp 461– [7] Rossi G., Phys. Rev. 29 pp 852– [8] Da Luz Vieira J. H., Z. Phys. 51 pp 241– [9] Gordon L. E., Phys. Rev. 58 pp 094017– [10] Gluck M., Eur. Phys. J. 5 pp 461– · doi:10.1007/s100529800978 [11] Gluck M., Phys. Rev. 63 pp 094005– [12] Cafarella A., Proc. 2nd Int. Workshop on Nonlinear Physics (2003) [13] Martin O., Phys. Rev. 57 pp 117502– [14] DOI: 10.1016/j.cpc.2004.03.006 · doi:10.1016/j.cpc.2004.03.006 [15] Curci G., Nucl. Phys. 175 pp 27– · doi:10.1016/0550-3213(80)90003-6 [16] Mertig R., Z. Phys. 70 pp 637– [17] Vogelsang W., Nucl. Phys. 475 pp 47– · doi:10.1016/0550-3213(96)00306-9 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.