zbMATH — the first resource for mathematics

QCD evolution equations: Numerical algorithms from the Laguerre expansion. (English) Zbl 0998.81111
Summary: A complete numerical implementation, in both singlet and nonsinglet sectors, of a very elegant method to solve the QCD Evolution equations, due to Furmanski and Petronzio, is presented. The algorithm is directly implemented in \(x\)-space by a Laguerre expansion of the parton distributions. All the leading-twist distributions are evolved: longitudinally polarized, transversely polarized and unpolarized, to NLO accuracy. The expansion is optimal at finite \(x\), up to reasonably small \(x\)-values (\(x\approx 10^{-3}\)), below which the convergence of the expansion slows down. The polarized evolution is smoother, due to the less singular structure of the polarized DGLAP kernels at small-\(x\). In the region of fast convergence, which covers most of the usual perturbative applications, high numerical accuracy is achieved by expanding over a set of approximately 30 polynomials, with a very modest running time.

81V05 Strong interaction, including quantum chromodynamics
81-08 Computational methods for problems pertaining to quantum theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
ffevol1.0; LAG2NS
Full Text: DOI
[1] Ramsey, G.P., Prog. part. nucl. phys., 39, 599, (1997)
[2] Furmanski, W.; Petronzio, R., Nucl. phys. B, 195, 237, (1982)
[3] Furmanski, W.; Petronzio, R.; Furmanski, W.; Petronzio, R., Z. phys. C, Phys. lett., 97 B, 437, (1980)
[4] Ropele, M.; Traini, M.; Vento, V., Nucl. phys. A, 584, 634, (1995)
[5] Song, X.; McCarthy, J.S.; Weber, H.J.; Weber, H.; Song, X.; Kirchbach, M., Mod. phys. lett. A, 12, 729, (1997)
[6] Isgur, N.; Karl, G.; Isgur, N.; Karl, G., Phys. rev. D, Phys. rev. D, D 19, 2653, (1979)
[7] Efremov, A.V.; Radyushkin, A.V.; Efremov, A.V.; Radyushkin, A.V.; Brodsky, S.J.; Lepage, G.P.; Efremov, A.V.; Radyushkin, A.V., Theor. math. phys., Phys. lett. B, Phys. lett. B, Phys. rev. D, 22, 2157, (1980)
[8] Ji, X.; Radyushkin, A.V., Phys. rev. D, Phys. rev. D, 56, 7114, (1997)
[9] Hirai, M.; Kumano, S.; Miyama, M.; Blümlein, J.; Geyer, B.; Robaschik, D.; Miyama, M.; Kumano, S., Comput. phys. commun., 108, 38, (1998)
[10] Kobayashi, R.; Konuma, M.; Kumano, S., Comput. phys. commun., 86, 264-278, (1995)
[11] Curci, G.; Furmanski, W.; Petronzio, R., Nucl. phys. B, 175, 27, (1980)
[12] Mertig, R.; Van Neerven, W.L., Z. phys. C, 70, 637-654, (1996)
[13] Vogelsang, W., Nucl. phys. B, 475, 47-72, (1996)
[14] Chang, S.; Corianò, C.; Field, R.D.; Gordon, L.E., Phys. lett. B, 403, 344, (1997), Nucl. Phys. B, to appear
[15] Artru, X.; Mekhfi, M., Z. phys. C, 45, 669, (1990)
[16] Kumano, S.; Miyama, M.; Hayashigaki, A.; Kanazawa, Y.; Koike, Y.; Vogelsang, W., Phys. rev. D, 56, 2504, (1997)
[17] Ramsey, G., J. comput. phys., 60, 119, (1985)
[18] S. Cotanch, unpublished.
[19] Gehrmann, T.; Sterling, W.J., Z. phys. C, 65, 461-470, (1995)
[20] Heddle, D.; Kwon, Y.R.; Tabakin, F., Comput. phys. commun., 38, 71, (1985)
[21] Kwon, Y.R.; Tabakin, F., Phys. rev. C, 18, 932, (1978)
[22] Ralston, J.P.; Soper, D.E., Nucl. phys. B, 152, 109, (1979)
[23] Jaffe, R.L.; Ji, X., Phys. rev. lett., 67, 552, (1991)
[24] Lai, H.L.; Lai, H.L.; Tung, W.K., Phys. rev. D, Phys. rev. D, 51, 4763, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.