×

zbMATH — the first resource for mathematics

Three solutions for a perturbed sublinear elliptic problem in \(\mathbb{R}^N\). (English) Zbl 1180.35190
The authors deal with the following perturbation problem \[ \begin{cases} -\Delta u=h(x)|u|^{s-2} u+\lambda f(x,u)\quad & \text{in }\mathbb{R}^d\\ u\in{\mathcal D}^{1,2}(\mathbb{R}^d),\end{cases} \tag{1} \] where \(s\in (1,2)\), \(d\geq 3\), \(\lambda\in R_+\), \(f:\mathbb{R}^d\times \mathbb{R}\to \mathbb{R}\) is a Caratheodory function and \(h\) is a given function. \[ {\mathcal D}^{1,2}(\mathbb{R}^d)=\{u\in L^{\frac{2d}{d-2}}(\mathbb{R}^d)|\nabla u\in L^2(\mathbb{R}^d)\} \] is the completion of \[ C_0(\mathbb{R}^d)=\{u\in L^{\frac{2d}{d-2}}(\mathbb{R}^d)|\nabla u\in L^2(\mathbb{R}^d)\} \] is the completion of \[ C_0(\mathbb{R}^d)=\{u\in C(\mathbb{R}^d)|\text{supp}\,u\text{ is compact\}} \] with respect to the norm \(\| u\|=\left(\int_{\mathbb{R}^d}|\nabla u|^2\,dx\right)^{1/2}\). Using variational methods, the authors establish a result that ensures the existence of at least three weak solutions.

MSC:
35J20 Variational methods for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI