×

zbMATH — the first resource for mathematics

Fragmentation uncertainties in hadronic observables for top-quark mass measurements. (English) Zbl 1382.81220
Summary: We study the Monte Carlo uncertainties due to modeling of hadronization and showering in the extraction of the top-quark mass from observables that use exclusive hadronic final states in top decays, such as \(t \rightarrow \text{anything} + J / \psi\; \text{or}\; t \rightarrow \text{anything} +(B \rightarrow \text{charged tracks})\), where \(B\) is a \(B\)-hadron. To this end, we investigate the sensitivity of the top-quark mass, determined by means of a few observables already proposed in the literature as well as some new proposals, to the relevant parameters of event generators, such as HERWIG 6 and PYTHIA 8. We find that constraining those parameters at \(\mathcal{O}(1 \% - 10 \%)\) is required to avoid a Monte Carlo uncertainty on \(m_t\) greater than 500 MeV. For the sake of achieving the needed accuracy on such parameters, we examine the sensitivity of the top-quark mass measured from spectral features, such as peaks, endpoints and distributions of \(E_B,\; m_{B \ell}\), and some \(m_{T 2}\)-like variables. We find that restricting oneself to regions sufficiently close to the endpoints enables one to substantially decrease the dependence on the Monte Carlo parameters, but at the price of inflating significantly the statistical uncertainties. To ameliorate this situation we study how well the data on top-quark production and decay at the LHC can be utilized to constrain the showering and hadronization variables. We find that a global exploration of several calibration observables, sensitive to the Monte Carlo parameters but very mildly to \(m_t\), can offer useful constraints on the parameters, as long as such quantities are measured with a 1% precision.
MSC:
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
11K45 Pseudo-random numbers; Monte Carlo methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Degrassi, G.; Di Vita, S.; Elias-Miro, J.; Espinosa, J. R.; Giudice, G. F.; Isidori, G.; Strumia, A., J. High Energy Phys., 1208, (2012)
[2] Andreassen, A.; Schwartz, M. D., J. High Energy Phys., 10, (2017)
[3] Corcella, G., PoS (TOP2015), (2016)
[4] Butenschoen, M.; Dehnadi, B.; Hoang, A. H.; Mateu, V.; Preisser, M.; Stewart, I. W., Phys. Rev. Lett., 117, (2016)
[5] Hoang, A. H.; Mantry, S.; Pathak, A.; Stewart, I. W.
[6] Measurement of the mass of the top quark in decays with a \(J / \psi\) meson in pp collisions at 8 TeV, (Aug. 2016), arXiv e-prints
[7] Measurement of the top quark mass with the template method in the \(t \overline{t} \rightarrow\) leptons+jets channel using ATLAS data, Eur. Phys. J. C, 72, 2046, (June 2012)
[8] Measurement of the top quark mass in the and channels using ATLAS data, Eur. Phys. J. C, 75, 330, (July 2015)
[9] Corcella, G.; Knowles, I. G.; Marchesini, G.; Moretti, S.; Odagiri, K.; Richardson, P.; Seymour, M. H.; Webber, B. R., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), J. High Energy Phys., 1, (Jan. 2001)
[10] Sjöstrand, T.; Ask, S.; Christiansen, J. R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C. O.; Skands, P. Z., An introduction to pythia 8.2 · Zbl 1344.81029
[11] Eur. Phys. J. C, 74, 3109, (2015)
[12] Alwall, J., J. High Energy Phys., 1407, (2014)
[13] Alioli, S.; Nason, P.; Oleari, C.; Re, E., J. High Energy Phys., 1006, (2010)
[14] Papanastasiou, A. S.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F., Phys. Lett. B, 726, 223, (2013)
[15] Artoisenet, P.; Frederix, R.; Mattelaer, O.; Rietkerk, R., J. High Energy Phys., 1303, (2013)
[16] Campbell, J. M.; Ellis, R. K.; Nason, P.; Re, E., J. High Energy Phys., 1504, (2015)
[17] Jezo, T.; Lindert, J. M.; Nason, P.; Oleari, C.; Pozzorini, S., Eur. Phys. J. C, 76, 691, (2016)
[18] Gleisberg, T.; Höche, S.; Krauss, F.; Schonherr, M.; Schumann, S.; Siegert, F.; Winter, J., J. High Energy Phys., 0902, (2009)
[19] Höche, S.; Moretti, N.; Pozzorini, S.; Siegert, F., Eur. Phys. J. C, 77, 145, (2017)
[20] Höche, S.; Kuttimalai, S.; Schumann, Steffen; Siegert, Frank, Eur. Phys. J. C, 75, 135, (2015)
[22] Kharchilava, A., Top mass determination in leptonic final states with \(J / \psi\), Phys. Lett. B, 476, 73-78, (Mar. 2000)
[23] Hill, C. S.; Incandela, J. R.; Lamb, J. M., Method for measurement of the top quark mass using the mean decay length of b hadrons in \(t \overline{t}\) events, Phys. Rev. D, 71, 5, (Mar. 2005)
[24] CMS Collaboration, Measurement of the top quark mass using the B-hadron lifetime technique, CMS-PAS-TOP-12-030.
[25] Projected improvement of the accuracy of top-quark mass measurements at the upgraded LHC, (2013), CERN Geneva, Tech. Rep. CMS-PAS-FTR-13-017
[26] Measurement of the top quark mass using the invariant mass of lepton pairs in soft muon b-tagged events, Phys. Rev. D, 80, 5, (Sept. 2009)
[27] Measurement of the top quark mass using charged particles in pp collisions at \(\sqrt{s} = 8\) TeV, (Mar. 2016), arXiv e-prints
[28] Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N., A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution obtained at the Z pole, Eur. Phys. J. C, 71, 1557, (Feb. 2011)
[29] Combined results on b-hadron production rates and decay properties, (Dec. 2001), arXiv High Energy Physics - Experiment e-prints
[30] Measurement of the b-quark fragmentation function in Z^0 decays, Phys. Rev. D, 65, 9, (May 2002)
[31] Mele, B.; Nason, P., Nucl. Phys. B, Nucl. Phys. B, 921, 841, (2017), Erratum:
[32] Cacciari, M.; Nason, P.; Oleari, C., J. High Energy Phys., 0604, (2006)
[33] Cacciari, M.; Corcella, G.; Mitov, A. D., J. High Energy Phys., 0212, (2002)
[34] Corcella, G., Nucl. Phys. B, Nucl. Phys. B, 713, 609, (2005), Erratum:
[35] Kartvelishvili, V. G.; Likodek, A. K.; Petrov, V. A., Phys. Lett. B, 78, 615, (1978)
[36] Peterson, C.; Schlatter, D.; Schmitt, I.; Zerwas, P. M., Phys. Rev. D, 27, 105, (1983)
[37] Fickinger, M.; Fleming, S.; Kim, C.; Mereghetti, E., Effective field theory approach to heavy quark fragmentation, (June 2016), arXiv e-prints
[38] Andersson, B.; Gustafson, G.; Ingelman, G.; Sjostrand, T., Parton fragmentation and string dynamics, Phys. Rep., 97, 31-145, (1983)
[39] Bowler, M. G., \(e^+ e^-\) production of heavy quarks in the string model, Z. Phys. C, 11, 169, (1981)
[40] Webber, B. R., Nucl. Phys. B, 238, 492, (1984)
[41] Biswas, S.; Melnikov, K.; Schulze, M., Next-to-leading order QCD effects and the top quark mass measurements at the LHC, J. High Energy Phys., 8, (Aug. 2010)
[42] Agashe, K.; Kim, D.; Franceschini, R.; Schulze, M., Top quark mass determination from the energy peaks of b-jets and b-hadrons at NLO QCD
[43] Gieseke, S.; Ribon, A.; Seymour, M. H.; Stephens, P.; Webber, B., Herwig++ 1.0: an event generator for \(e^+ e^-\) annihilation, J. High Energy Phys., 2, (Feb. 2004)
[44] Bellm, J.; Gieseke, S.; Grellscheid, D.; Plätzer, S.; Rauch, M.; Reuschle, C.; Richardson, P.; Schichtel, P.; Seymour, M. H.; Siódmok, A.; Wilcock, A.; Fischer, N.; Harrendorf, M. A.; Nail, G.; Papaefstathiou, A.; Rauch, D., Herwig 7.0 / herwig++ 3.0 release note, (Dec. 2015), arXiv e-prints
[45] Karneyeu, A.; Mijovic, L.; Prestel, S.; Skands, P. Z., MCPLOTS: a particle physics resource based on volunteer computing, Eur. Phys. J. C, 74, 2714, (Feb. 2014)
[46] Skands, P.; Carrazza, S.; Rojo, J., Tuning PYTHIA 8.1: the monash 2013 tune, (Apr. 2014), arXiv e-prints
[47] A study of the sensitivity to the pythia8 parton shower parameters of \(t \overline{t}\) production measurements in pp collisions at \(\sqrt{s} = 7\) TeV with the ATLAS experiment at the LHC, (Mar. 2015), CERN Geneva, Tech. Rep. ATL-PHYS-PUB-2015-007
[48] Argyropoulos, S.; Sjöstrand, T., J. High Energy Phys., 1411, (2014)
[49] Corcella, G., EPJ Web Conf., 80, (2014)
[50] Corcella, G.; Mescia, F., Eur. Phys. J. C, Eur. Phys. J. C, 68, 687, (2010), Erratum:
[51] Measurement of the top-quark mass in \(t \overline{t}\) events with lepton+jets final states in pp collisions at \(\sqrt{s} = 8\) TeV, (2014), CERN Geneva, Tech. Rep. CMS-PAS-TOP-14-001
[52] Corcella, G.; Seymour, M. H., Phys. Lett. B, 442, 417, (1998)
[53] Norrbin, E.; Sjöstrand, T., Nucl. Phys. B, 603, 297, (2001)
[54] Investigations of the impact of the parton shower tuning in pythia 8 in the modelling of \(\operatorname{t} \overline{\operatorname{t}}\) at \(\sqrt{s} = 8\) and 13 TeV, CERN Note, no. CMS-PAS-TOP-16-021
[55] Bellm, J.; Gieseke, S.; Grellscheid, D.; Kirchgaeßer, P.; Loshaj, F.; Nail, G.; Papaefstathiou, A.; Plätzer, S.; Podskubka, R.; Rauch, M.; Reuschle, C.; Richardson, P.; Schichtel, P.; Seymour, M. H.; Siódmok, A.; Webster, S., Herwig 7.1 release note, (May 2017), arXiv e-prints
[56] Bellm, J.; Cormier, K.; Gieseke, S.; Plätzer, S.; Reuschle, C.; Richardson, P.; Webster, S.
[57] Corcella, G.; Drollinger, V., Bottom-quark fragmentation: comparing results from tuned event generators and resummed calculations, Nucl. Phys. B, 730, 82-102, (Dec. 2005)
[58] Catani, S.; Webber, B. R.; Marchesini, G., QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B, 349, 635-654, (1991)
[59] Lester, C. G.; Summers, D. J., Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B, 463, 99, (1999)
[60] Matchev, K. T.; Park, M., A general method for determining the masses of semi-invisibly decaying particles at hadron colliders, Phys. Rev. Lett., 107, (2011)
[61] Mass determination in the \(t \overline{t}\) system with kinematic endpoints, (2012), CERN Geneva, Tech. Rep. CMS-PAS-TOP-11-027
[62] Measurement of the top quark mass in the dileptonic \(t \overline{t}\) decay channel using the \(M_{b l}\), \(M_{T 2}\), and MAOS \(M_{b l \nu}\) observables, (2016), CERN Geneva, Tech. Rep. CMS-PAS-TOP-15-008
[63] Alioli, S.; Fernandez, P.; Fuster, J.; Irles, A.; Moch, S.-O.; Uwer, P.; Vos, M., A new observable to measure the top-quark mass at hadron colliders, (Mar. 2013), arXiv e-prints
[64] Burns, M.; Kong, K.; Matchev, K. T.; Park, M., Using subsystem MT2 for complete mass determinations in decay chains with missing energy at hadron colliders, J. High Energy Phys., 0903, (2009)
[65] d’Enterria, D.; Eskola, K. J.; Helenius, I.; Paukkunen, H., Confronting current NLO parton fragmentation functions with inclusive charged-particle spectra at hadron colliders, Nucl. Phys. B, 883, 615-628, (June 2014)
[66] Carli, Tancredi, Hadronisation and radiation systematics and b-fragmentation, Top quark LHC Working group meeting May 2014
[67] Measurement of jet shapes in top pair events at \(\sqrt{s} = 7\) TeV using the ATLAS detector, (July 2013), arXiv e-prints
[68] Konar, P.; Kong, K.; Matchev, K. T.; Park, M., RECO level \(\sqrt{s}_{m i n}\) and subsystem improved \(\sqrt{s}_{m i n}\): global inclusive variables for measuring the new physics mass scale in events with missing energy at hadron colliders, J. High Energy Phys., 6, (June 2011)
[69] Penrose, R.; Todd, J. A., A generalized inverse for matrices, Math. Proc. Camb. Philos. Soc., 51, 03, 406, (July 1955)
[70] Dresden, A., The fourteenth western meeting of the American mathematical society, Bull. Am. Math. Soc., 26, 9, 385-397, (June 1920)
[71] Agashe, K.; Franceschini, R.; Kim, D., Simple “invariance” of two-body decay kinematics, Phys. Rev. D, 88, 5, (2013)
[72] Agashe, K.; Franceschini, R.; Kim, D.; Wardlow, K., Using energy peaks to count dark matter particles in decays, Phys. Dark Universe, 2, 72, (2013)
[73] Ferrario Ravasio, S.; Jezo, T.; Nason, P.; Oleari, C.
[74] Binosi, D.; Collins, J.; Kaufhold, C.; Theussl, L., Jaxodraw: a graphical user interface for drawing Feynman diagrams. version 2.0 release notes, Comput. Phys. Commun., 180, 9, 1709-1715, (Sep. 2009)
[75] Tange, O., Gnu parallel - the command-line power tool, The USENIX Magazine, 36, 1, 42-47, (Feb. 2011), ;login:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.