zbMATH — the first resource for mathematics

Composite vectors at the large hadron collider. (English) Zbl 1271.81191
Summary: An unspecified strong dynamics may give rise to composite vectors sufficiently light that their interactions, among themselves or with the electroweak gauge bosons, be approximately described by an effective Lagrangian invariant under \(\mathrm{SU}(2)_L\times\mathrm{SU}(2)_R/\mathrm{SU}(2)_{L+R}\). We study the production at the LHC of two such states by vector boson fusion or by the Drell-Yan process in this general framework and we compare it with the case of gauge vectors from an \(\mathrm{SU}(2)_L\times\mathrm{SU}(2)_R \times\mathrm{SU}(2)^N\) gauge model spontaneously broken to the diagonal \(\mathrm{SU}(2)\) subgroup by a generic \(\sigma\)-model. Special attention is payed to the asymptotic behavior of the different amplitudes in both cases. The expected rates of multi-lepton events from the decay of the composite vectors are also given. A thorough phenomenological analysis and the evaluation of the backgrounds to such signals, aiming at assessing the visibility of composite-vector pairs at the LHC, is instead deferred to future work.

81V22 Unified quantum theories
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
Full Text: DOI
[1] Bagger, J.; etal., The strongly interacting W W system: gold plated modes, Phys. Rev., D 49, 1246, (1994)
[2] Kaplan, DB; Georgi, H., SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett., B 136, 83, (1984)
[3] Chivukula, RS; Koulovassilopoulos, V., Phenomenology of a nonstandard Higgs, Phys. Lett., B 309, 371, (1993)
[4] R. Contino, New Physics at the LHC: Strong vs Weak symmetry breaking, arXiv:0908.3578 [SPIRES].
[5] Giudice, GF; Grojean, C.; Pomarol, A.; Rattazzi, R., The strongly-interacting light Higgs, JHEP, 06, 045, (2007)
[6] I. Low, R. Rattazzi and A. Vichi, Theoretical Constraints on the Higgs Effective Couplings, arXiv:0907.5413 [SPIRES].
[7] Chivukula, RS; Dicus, DA; He, H-J, Unitarity of compactified five dimensional Yang-Mills theory, Phys. Lett., B 525, 175, (2002)
[8] Csáki, C.; Grojean, C.; Murayama, H.; Pilo, L.; Terning, J., Gauge theories on an interval: unitarity without a Higgs, Phys. Rev., D 69, 055006, (2004)
[9] Barbieri, R.; Isidori, G.; Rychkov, VS; Trincherini, E., Heavy vectors in Higgs-less models, Phys. Rev., D 78, 036012, (2008)
[10] A. Birkedal, K.T. Matchev and M. Perelstein, Phenomenology of Higgsless models at the LHC and the ILC, in the Proceedings of 2005 International Linear Collider Workshop (LCWS 2005), Stanford U.S.A., 18-22 Mar 2005, pg. 0314 [hep-ph/0508185] [SPIRES].
[11] He, H-J; etal., LHC signatures of new gauge bosons in minimal higgsless model, Phys. Rev., D 78, 031701, (2008)
[12] Accomando, E.; Curtis, S.; Dominici, D.; Fedeli, L., Drell-Yan production at the LHC in a four site higgsless model, Phys. Rev., D 79, 055020, (2009)
[13] Accomando, E.; Curtis, S.; Dominici, D.; Fedeli, L., The four site higgsless model at the LHC, Nuovo Cim., 123B, 809, (2008)
[14] Belyaev, A.; etal., Technicolor walks at the LHC, Phys. Rev., D 79, 035006, (2009)
[15] Catà, O.; Isidori, G.; Kamenik, JF, Drell-Yan production of heavy vectors in higgsless models, Nucl. Phys., B 822, 230, (2009)
[16] Casalbuoni, R.; Curtis, S.; Dominici, D.; Gatto, R., Effective weak interaction theory with possible new vector resonance from a strong Higgs sector, Phys. Lett., B 155, 95, (1985)
[17] Casalbuoni, R.; Curtis, S.; Dominici, D.; Gatto, R., Physical implications of possible J = 1 bound states from strong Higgs, Nucl. Phys., B 282, 235, (1987)
[18] Chivukula, RS; Dicus, DA; He, H-J; Nandi, S., Unitarity of the higher dimensional standard model, Phys. Lett., B 562, 109, (2003)
[19] Nomura, Y., Higgsless theory of electroweak symmetry breaking from warped space, JHEP, 11, 050, (2003)
[20] Barbieri, R.; Pomarol, A.; Rattazzi, R., Weakly coupled higgsless theories and precision electroweak tests, Phys. Lett., B 591, 141, (2004)
[21] Foadi, R.; Gopalakrishna, S.; Schmidt, C., Higgsless electroweak symmetry breaking from theory space, JHEP, 03, 042, (2004)
[22] Georgi, H., Fun with higgsless theories, Phys. Rev., D 71, 015016, (2005)
[23] Coleman, SR; Wess, J.; Zumino, B., Structure of phenomenological Lagrangians. 1, Phys. Rev., 177, 2239, (1969)
[24] Callan, CG; Coleman, SR; Wess, J.; Zumino, B., Structure of phenomenological Lagrangians. 2, Phys. Rev., 177, 2247, (1969)
[25] Ecker, G.; Gasser, J.; Pich, A.; Rafael, E., The role of resonances in chiral perturbation theory, Nucl. Phys., B 321, 311, (1989)
[26] Ecker, G.; Gasser, J.; Leutwyler, H.; Pich, A.; Rafael, E., Chiral Lagrangians for massive spin 1 fields, Phys. Lett., B 223, 425, (1989)
[27] Chivukula, RS; He, H-J; Kurachi, M.; Simmons, EH; Tanabashi, M., General sum rules for WW scattering in higgsless models: equivalence theorem and deconstruction identities, Phys. Rev., D 78, 095003, (2008)
[28] A. Pukhov, A. Belyaev and N. Christensen, http://theory.sinp.msu.ru/pukhov/calchep.html.
[29] Pallante, E.; Petronzio, R., Anomalous effective Lagrangians and vector resonance models, Nucl. Phys., B 396, 205, (1993)
[30] Borasoy, B.; Meissner, U-G, Chiral Lagrangians for baryons coupled to massive spin-1 fields, Int. J. Mod. Phys., A 11, 5183, (1996)
[31] Harada, M.; Yamawaki, K., Hidden local symmetry at loop: A new perspective of composite gauge boson and chiral phase transition, Phys. Rept., 381, 1, (2003)
[32] Bijnens, J.; Pallante, E., On the tensor formulation of effective vector Lagrangians and duality transformations, Mod. Phys. Lett., A 11, 1069, (1996)
[33] Cirigliano, V.; etal., Towards a consistent estimate of the chiral low-energy constants, Nucl. Phys., B 753, 139, (2006)
[34] Kampf, K.; Novotny, J.; Trnka, J., On different Lagrangian formalisms for vector resonances within chiral perturbation theory, Eur. Phys. J., C 50, 385, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.