×

Selection of quasi-stationary states in the stochastically forced Navier-Stokes equation on the torus. (English) Zbl 1446.37064

The two-dimensional (in space) periodic Navier-Stokes equation with stochastic forcing is considered on \([0,2\pi\delta]\times[0,2\pi]\) with \(\delta\approx 1\). A finite-dimensional stochastic differential equation model is developed to study the dynamics of the vorticity equation with noise when the viscosity is small. In fact, eight Fourier modes are involved in the computations. Special solutions, the so-called bar states (i.e., unidirectional Kolmogorov flows), and dipoles are obtained as long-time quasi-stationary asymptotic states for that model. These solutions approximate the Euler system in the limit of inviscid flows.

MSC:

37L55 Infinite-dimensional random dynamical systems; stochastic equations
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
37H10 Generation, random and stochastic difference and differential equations
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D06 Statistical solutions of Navier-Stokes and related equations
76D17 Viscous vortex flows
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beck, M.; Wayne, CE, Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier-Stokes equations, Proc. R. Soc. Edinb. Sect. A, 143, 5, 905-927 (2013) · Zbl 1296.35114 · doi:10.1017/S0308210511001478
[2] Beck, M.; Cooper, E.; Spiliopoulos, K., Selection of quasi-stationary states in the Navier-Stokes equation on the torus, Nonlinearity, 32, 1, 209-237 (2019) · Zbl 1406.35219 · doi:10.1088/1361-6544/aae936
[3] Bedrossian, J.; Coti Zelati, M., Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows, Arch. Rational Mech. Anal., 224, 3, 1161-1204 (2017) · Zbl 1371.35213 · doi:10.1007/s00205-017-1099-y
[4] Bedrossian, J.; Coti Zelati, M.; Glatt-Holtz, N., Invariant measures for passive scalars in the small noise inviscid limit, Commun. Math. Phys., 348, 1, 101-127 (2016) · Zbl 1351.35123 · doi:10.1007/s00220-016-2758-9
[5] Bensoussan, A.; Temam, R., Équations stochastiques du type Navier-Stokes, J. Funct. Anal., 13, 195-222 (1973) · Zbl 0265.60094 · doi:10.1016/0022-1236(73)90045-1
[6] Bouchet, F.; Simonnet, E., Random changes of flow topology in two-dimensional and geophysical turbulence, Phys. Rev. Lett., 102, 094504 (2009) · doi:10.1103/PhysRevLett.102.094504
[7] Glatt-Holtz, N.; Šverák, V.; Vicol, V., On inviscid limits for the stochastic Navier-Stokes equations and related models, Arch. Rational Mech. Anal., 217, 2, 619-649 (2015) · Zbl 1316.35227 · doi:10.1007/s00205-015-0841-6
[8] Grenier, E.; Nguyen, TT; Rousset, F.; Soffer, A., Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method, J. Funct. Anal., 278, 3, 108339 (2020) · Zbl 1447.35247 · doi:10.1016/j.jfa.2019.108339
[9] Ibrahim, S.; Maekawa, Y.; Masmoudi, N., On pseudospectral bound for non-selfadjoint operators and its application to stability of Kolmogorov flows, Ann. PDE, 5, 14 (2019) · Zbl 1439.35370 · doi:10.1007/s40818-019-0070-7
[10] Kuksin, S.; Shirikyan, A., Mathematics of Two-Dimensional Turbulence (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 1333.76003
[11] Ladyzenskaja, OA; Solonnikov, VA; Ural’ceva, NN, Linear and Quasi-linear Equations of Parabolic Type (1968), Providence: American Mathematical Society, Providence · Zbl 0174.15403
[12] Lin, Z.; Xu, M., Metastability of kolmogorov flows and inviscid damping of shear flows, Arch. Rational Mech. Anal., 231, 1811-1852 (2019) · Zbl 1426.76155 · doi:10.1007/s00205-018-1311-8
[13] Lord, GL; Powell, CE; Shardlow, T., An Introduction to Computational Stochastic PDEs (2014), Cambridge: Cambridge University Press, Cambridge · Zbl 1327.60011
[14] Mattingly, JC, The dissipative scale of the stochastics Navier-Stokes equation: regularization and analyticity, J. Stat. Phys., 108, 5-6, 1157-1179 (2002) · Zbl 1030.60049 · doi:10.1023/A:1019799700126
[15] Mattingly, JC; Pardoux, E., Invariant measure selection by noise: an example, Discrete Contin. Dyn. Syst., 34, 10, 4223-4257 (2014) · Zbl 1302.37048 · doi:10.3934/dcds.2014.34.4223
[16] Novikov, EA, Functionals and the random-force method in turbulence theory, Soviet Phys. JETP, 20, 1290-1294 (1965)
[17] Pavliotis, G.; Stuart, A., Multiscale Methods: Averaging and Homogenization (2008), Berlin: Springer, Berlin · Zbl 1160.35006
[18] Wei, D.; Zhang, Z.; Zhao, W., Linear inviscid damping and enhanced dissipation for the Kolmogorov flow, Adv. Math., 362, 106963 (2020) · Zbl 1437.76010 · doi:10.1016/j.aim.2019.106963
[19] Weinan, E.; Mattingly, JC, Ergodicity for the Navier-Stokes equation with degenerate random forcing: finite-dimensional approximation, Commun. Pure Appl. Math., 54, 11, 1386-1402 (2001) · Zbl 1024.76012 · doi:10.1002/cpa.10007
[20] Yin, Z.; Montgomery, DC; Clercx, HJH, Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of “patches” and “points”, Phys. Fluids, 15, 1937-1953 (2003) · Zbl 1186.76590 · doi:10.1063/1.1578078
[21] Zelik, S., Inertial manifolds and finite-dimensional reduction for dissipative pdes, Proc. R. Soc. Edinb. Sect. A, 144, 6, 1245-1327 (2014) · Zbl 1343.35039 · doi:10.1017/S0308210513000073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.