×

Ghost stabilisation of the material point method for stable quasi-static and dynamic analysis of large deformation problems. (English) Zbl 1528.74115

Summary: The unstable nature of the material point method (MPM) is widely documented and is a barrier to the method being used for routine engineering analyses of large deformation problems. The vast majority of articles concerning this issue are focused on the instabilities that manifest when a material point crosses between background grid cells. However, there are other issues related to the stability of MPMs. This article focuses on the issue of the conditioning of the global system of equations caused by the arbitrary nature of the position of the physical domain relative to the background computational grid. The issue is remedied here via the use of a ghost stabilisation technique that penalises variations in the gradient of the solution field near the boundaries of the physical domain. This technique transforms the stability of the MPM, providing a robust computational framework for large deformation explicit dynamic and implicit quasi-static analysis.
© 2023 The Author. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

MSC:

74S99 Numerical and other methods in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74B20 Nonlinear elasticity

Software:

MPM3D; CutFEM
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] SulskyD, ChenZ, SchreyerHL. A particle method for history‐dependent materials. Comput Methods Appl Mech Eng. 1994;118(1):179‐196. · Zbl 0851.73078
[2] deVaucorbeilA, NguyenVP, SinaieS, WuJY. Material point method after 25 years: theory, implementation, and applications. In: BordasSPA (ed.), BalintDS (ed.), eds. Advances in Applied Mechanics. Vol 53. Elsevier; 2020:185‐398.
[3] SolowskiWT, BerzinsM, CoombsWM, et al. Material point method: overview and challenges ahead. In: BordasSPA (ed.), BalintDS (ed.), eds. Advances in Applied Mechanics. Vol 54. Elsevier; 2021:113‐204.
[4] LiuK, WangY, HuangM, YuanWH. Postfailure analysis of slopes by random generalized interpolation material point method. Int J Geomech. 2021;21(3):04021015.
[5] StickoS, LudvigssonG, KreissG. High‐order cut finite elements for the elastic wave equation. Adv Comput Math. 2020;46(45):1‐28. · Zbl 1437.65144
[6] HansboP, LarsonM, LarssonK. Cut finite element methods for linear elasticity problems. In: BordasS (ed.), BurmanE (ed.), LarsonM (ed.), OlshanskiiM (ed.), eds. Geometrically Unfitted Finite Element Methods and Applications. Lecture Notes in Computational Science and Engineering. Springer; 2017:25‐63. · Zbl 1390.74180
[7] BurmanE, ElfversonD, HansboP, LarsonM, LarssonK. Shape optimization using the cut finite element method. Comput Methods Appl Mech Eng. 2018;328:242‐261. · Zbl 1439.74316
[8] TeradaK, AsaiM, YamagishiM. Finite cover method for linear and non‐linear analyses of heterogeneous solids. Int J Numer Methods Eng. 2003;58(9):1321‐1346. · Zbl 1032.74685
[9] ParvizianJ, DüsterA, RankE. Finite cell method. Comput Mech. 2007;41:121‐133. · Zbl 1162.74506
[10] DüsterA, ParvizianJ, YangZ, RankE. The finite cell method for three‐dimensional problems of solid mechanics. Comput Methods Appl Mech Eng. 2008;197(45):3768‐3782. · Zbl 1194.74517
[11] MoësN, DolbowJ, BelytschkoT. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 1999;46(1):131‐150. · Zbl 0955.74066
[12] BelytschkoT, BlackT. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng. 1999;45(5):601‐620. · Zbl 0943.74061
[13] MaX, GiguerePT, JayaramanB, ZhangDZ. Distribution coefficient algorithm for small mass nodes in material point method. J Comput Phys. 2010;229(20):7819‐7833. · Zbl 1425.76188
[14] BardenhagenS, KoberE. The generalized interpolation material point method. Comput Model Eng Sci. 2004;5(6):477‐496.
[15] GanY, SunZ, ChenZ, ZhangX, LiuY. Enhancement of the material point method using B‐spline basis functions. Int J Numer Methods Eng. 2018;113(3):411‐431.
[16] SteffenM, KirbyRM, BerzinsM. Analysis and reduction of quadrature errors in the material point method. Int J Numer Methods Eng. 2008;76(6):922‐948. · Zbl 1195.74300
[17] YamaguchiY, MoriguchiS, TeradaK. Extended B‐spline‐based implicit material point method. Int J Numer Methods Eng. 2021;122(7):1746‐1769.
[18] SulskyD, ZhouSJ, SchreyerHL. Application of a particle‐in‐cell method to solid mechanics. Comput Phys Commun. 1995;87(1):236‐252. · Zbl 0918.73334
[19] NairnJA. Material point method calculations with explicit cracks. Comput Model Eng Sci. 2003;4(6):649‐663. · Zbl 1064.74176
[20] deVaucorbeilA, NguyenVP, HutchinsonCR. A total‐Lagrangian material point method for solid mechanics problems involving large deformations. Comput Methods Appl Mech Eng. 2020;360:112783. · Zbl 1441.74300
[21] BurgessD, SulskyD, BrackbillJ. Mass matrix formulation of the FLIP particle‐in‐cell method. J Comput Phys. 1992;103(1):1‐15. · Zbl 0761.73117
[22] BardenhagenS. Energy conservation error in the material point method for solid mechanics. J Comput Phys. 2002;180(1):383‐403. · Zbl 1061.74057
[23] LoveE, SulskyDL. An energy‐consistent material‐point method for dynamic finite deformation plasticity. Int J Numer Methods Eng. 2006;65(10):1608‐1638. · Zbl 1111.74047
[24] NairnJA, HammerquistCC. Material point method simulations using an approximate full mass matrix inverse. Comput Methods Appl Mech Eng. 2021;377:113667. · Zbl 1506.74422
[25] PrettiG, CoombsWM, AugardeCE, SimsB, PuigvertMM, GutiérrezJAR. A conservation law consistent updated Lagrangian material point method for dynamic analysis. J Comput Phys. 2023;485:112075. · Zbl 07690205
[26] HammerquistCC, NairnJA. A new method for material point method particle updates that reduces noise and enhances stability. Comput Methods Appl Mech Eng. 2017;318:724‐738. · Zbl 1439.65127
[27] WangB, VardonPJ, HicksMA, ChenZ. Development of an implicit material point method for geotechnical applications. Comput Geotech. 2016;71:159‐167.
[28] BurmanE. Ghost penalty. C R Math. 2010;348(21):1217‐1220. · Zbl 1204.65142
[29] CoombsWM, AugardeCE. AMPLE: a material point learning environment. Adv Eng Softw. 2020;139:102748.
[30] CharltonTJ, CoombsWM, AugardeCE. iGIMP: an implicit generalised interpolation material point method for large deformations. Comput Struct. 2017;190:108‐125.
[31] BingY, CortisM, CharltonT, CoombsW, AugardeC. B‐spline based boundary conditions in the material point method. Comput Struct. 2019;212:257‐274.
[32] RemmerswaalG. Development and Implementation of Moving Boundary Conditions in the Material Point Method. Master’s Thesis. TU Delft; 2017.
[33] ChandraB, SingerV, TeschemacherT, WücheerR, LareseA. Nonconforming Dirichlet boundary conditions in implicit material point method by means of penalty augmentation. Acta Geotech. 2021;16:2315‐2335.
[34] CortisM, CoombsWM, AugardeCE, BrownMJ, BrennanA, RobinsonS. Imposition of essential boundary conditions in the material point method. Int J Numer Methods Eng. 2018;113(1):130‐152.
[35] SimoJ. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Methods Appl Mech Eng. 1992;99:61‐112. · Zbl 0764.73089
[36] deSouza NetoEA, PericD, OwenDRJ. Computational Methods for Plasticity: Theory and Applications. John Wiley & Sons, Ltd; 2008.
[37] CoombsWM, CharltonTJ, CortisM, AugardeCE. Overcoming volumetric locking in material point methods. Comput Methods Appl Mech Eng. 2018;333:1‐21. · Zbl 1440.74385
[38] WangL, CoombsW, AugardeC, et al. On the use of domain‐based material point methods for problems involving large distortion. Comput Methods Appl Mech Eng. 2019;355:1003‐1025. · Zbl 1441.74281
[39] CoombsWM, AugardeCE, BrennanAJ, et al. On Lagrangian mechanics and the implicit material point method for large deformation elasto‐plasticity. Comput Methods Appl Mech Eng. 2020;358:112622. · Zbl 1441.74037
[40] WangL, CoombsWM, AugardeCE, et al. An efficient and locking‐free material point method for three‐dimensional analysis with simplex elements. Int J Numer Methods Eng. 2021;122(15):3876‐3899.
[41] BrackbillJ, RuppelH. FLIP: a method for adaptively zoned, particle‐in‐cell calculations of fluid flows in two dimensions. J Comput Phys. 1986;65(2):314‐343. · Zbl 0592.76090
[42] HarlowF. The particle‐in‐cell computing method for fluid dynamics. Methods Comput Phys. 1964;3:319‐343.
[43] BerzinsM. Energy conservation and accuracy of some MPM formulations. Comput Part Mech. 2022;9:1205‐1217.
[44] SadeghiradA, BrannonRM, BurghardtJ. A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int J Numer Methods Eng. 2011;86(12):1435‐1456. · Zbl 1235.74371
[45] SadeghiradA, BrannonR, GuilkeyJ. Second‐order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces. Int J Numer Methods Eng. 2013;95(11):928‐952. · Zbl 1352.74493
[46] SteffenM, WallstedtPC, GuilkeyJE, KirbyRM, BerzinsM. Examination and analysis of implementation choices within the material point method. Comput Model Eng Sci. 2008;31:107‐127.
[47] AndersenS, AndersenL. Analysis of spatial interpolation in the material‐point method. Comput Struct. 2010;88(7):506‐518.
[48] WangB, VardonP, HicksM. Investigation of retrogressive and progressive slope failure mechanisms using the material point method. Comput Geotech. 2016;78:88‐98.
[49] StickoS, KreissG. Higher order cut finite elements for the wave equation. J Sci Comput. 2019;80:1867‐1887. · Zbl 1428.65046
[50] LiuZ, ZhangY, JiangY, YangH, YangY. Unfitted finite element method for fully coupled poroelasticity with stabilization. Comput Methods Appl Mech Eng. 2022;397:115132. · Zbl 1507.74127
[51] BadiaS, NeivaE, VerdugoF. Linking ghost penalty and aggregated unfitted methods. Comput Methods Appl Mech Eng. 2022;388:114232. · Zbl 1507.65231
[52] BurmanE, HansboP. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math. 2012;62(4):328‐341. · Zbl 1316.65099
[53] BurmanE, ClausS, HansboP, LarsonMG, MassingA. CutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng. 2015;104(7):472‐501. · Zbl 1352.65604
[54] DiviSC, ZuijlenvPH, HoangT, et al. Residual‐based error estimation and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical B‐splines. J Mech. 2022;38:204‐237.
[55] NoëlL, SchmidtM, DobleK, EvansJA, MauteK. XIGA: an eXtended IsoGeometric analysis approach for multi‐material problems. Comput Mech. 2022;70:1281‐1308. · Zbl 1509.74052
[56] KadapaC, DettmerW, PerićD. A stabilised immersed boundary method on hierarchical b‐spline grids for fluid-rigid body interaction with solid-solid contact. Comput Methods Appl Mech Eng. 2017;318:242‐269. · Zbl 1439.74429
[57] CoombsW. Finite Deformation of Particulate Geomaterials: Frictional and Anisotropic Critical State Elasto‐Plasticity. PhD Thesis. Durham University; 2011.
[58] González AcostaJL, VardonPJ, HicksMA. Development of an implicit contact technique for the material point method. Comput Geotech. 2021;130:103859.
[59] BardenhagenSG, GuilkeyJE, RoessigKM, BrackbillJU, WitzelWM, FosterJC. An improved contact algorithm for the material point method and application to stress propagation in granular material. Comput Model Eng Sci. 2001;2(4):509‐522. · Zbl 1147.74375
[60] MaJ, WangD, RandolphM. A new contact algorithm in the material point method for geotechnical simulations. Int J Numer Anal Methods Geomech. 2014;38(11):1197‐1210.
[61] ChenZP, ZhangX, QiuXM, LiuY. A frictional contact algorithm for implicit material point method. Comput Methods Appl Mech Eng. 2017;321:124‐144. · Zbl 1439.74216
[62] HuangP, ZhangX, MaS, HuangX. Contact algorithms for the material point method in impact and penetration simulation. Int J Numer Methods Eng. 2011;85(4):498‐517. · Zbl 1217.74145
[63] BardenhagenS, BrackbillJ, SulskyD. The material‐point method for granular materials. Comput Methods Appl Mech Eng. 2000;187(3):529‐541. · Zbl 0971.76070
[64] HomelMA, HerboldEB. Field‐gradient partitioning for fracture and frictional contact in the material point method. Int J Numer Methods Eng. 2017;109(7):1013‐1044.
[65] GaoL, GuoN, YangZ, JardineR. MPM modeling of pile installation in sand: contact improvement and quantitative analysis. Comput Geotech. 2022;151:104943.
[66] MolstadT. Finite Deformation Analysis Using the Finite Element Method. PhD Thesis. University of British Columbia; 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.