zbMATH — the first resource for mathematics

The heart function as a motor-brake system. (English) Zbl 1409.92068
Summary: The controversy between passive and active ventricular filling has been debated for decades and the question about the existence of an active diastole remains open. In this work, we advocate the model of active diastole by considering the heart as a suction pump and we add some more clues to support this point of view by the analysis of the pressure-volume (PV) loops of the left heart, comprising of the left ventricle (LV) and atrium (LA). Our working hypothesis is based on the dichotomy motor-brake: the cardiac muscle can act as a motor, when shortening against a load, or as a brake, when lengthening to a load. We discuss our hypothesis by means of a lumped model of the left heart, where both chambers are considered as hollow spherical shells. The notion of active stretch, introduced to describe the contractile behavior of the muscle fibers, plays a major role in our model. Then, the contraction of the muscle is related to the pressure and volume of the chamber through a nonlinear hyperelastic energy density function. Despite its simplicity, the model enlightens some important features of the LV-LA coupling and of the pumping function of the heart. Based on experimental PV data of the left heart of a normal human subject, it is shown that the contraction patterns of the LV and LA are synchronized with each other and have distinguishing features in each phase of the cardiac cycle. These results highlight the interplay between the two chambers and support the idea that the heart may act as a suction pump functioning in turn as a motor or a brake in order to meet specific demands in each phase of the cardiac cycle.
92C30 Physiology (general)
92C10 Biomechanics
Full Text: DOI
[1] Ambrosi, D.; Arioli, G.; Nobile, F.; Quarteroni, A., Electromechanical coupling in cardiac dynamics: the active strain approach, SIAM J. Appl. Math., 71, 605-621, (2011) · Zbl 1419.74174
[2] Anderson, R. H.; Yen Ho, S.; Sanchez-Quintana, D.; Redmann, K.; Lunkenheimer, P. P., Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes, Anat. Rec. Part A, 288A, 579-586, (2006)
[3] Bloom, W. L., Diastolic filling of the beating excised heart, Am. J. Physiol., 187, 1, 143-144, (1956)
[4] Bloom, W. L.; Ferris, E. B., Negative ventricular diastolic pressure in beating heart studied in vitro and in vivo, Proc. Soc. Exp. Biol. Med., 93, 3, 451-454, (1956)
[5] Brecher, G. A., Experimental evidence of ventricular diastolic suction, Circ. Res., 4, 5, 513-518, (1956)
[6] Brecher, G. A., Critical review of recent work on ventricular diastolic suction, Circ. Res., 6, 5, 554-566, (1958)
[7] Brecher, G. A.; Kissen, A. T., Relation of negative intra-ventricular pressure to ventricular volume, Circ. Res., 5, 2, 157-162, (1957)
[8] Burkhoff, D.; Mirsky, I.; Suga, H., Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers, Am. J. Physiol. Heart Circ. Physiol., 289, H501-H512, (2005)
[9] Campbell, K. B.; Simpson, A. M.; Campbell, S. G.; Granzier, H. L.; Slinker, B. K., Dynamic left ventricular elastance: a model for integrating cardiac muscle contraction into ventricular pressure-volume relationships, J. Appl. Physiol., 104, 958-975, (2008)
[10] Cherubini, C.; Filippi, S.; Nardinocchi, P.; Teresi, L., An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects, Prog. Biophys. Mol. Biol., 97, 562-573, (2008)
[11] Curatolo, M.; Teresi, L., Modeling and simulation of fish swimming with active muscles, J. Theor. Biol., 409, 18-26, (2016) · Zbl 1405.92012
[12] De Vita, R.; Grange, R.; Nardinocchi, P.; Teresi, L., Mathematical model for isometric and isotonic muscle contractions, J. Theor. Biol., 425, 1-10, (2017) · Zbl 1381.92005
[13] DiCarlo, A.; Quiligotti, S., Growth and balance, Mech. Res. Commun., 29, 449-456, (2002) · Zbl 1056.74005
[14] Dickinson, M. H.; Farley, C. T.; Full, R. J.; Koehl, M.; Kram, R.; Lehman, S., How animals move: an integrative view, Science, 288, 100-106, (2000)
[15] Frank, O., Zur dynamik des herzmuskels, Z. Biol., 32, 370-447, (1895)
[16] Gioffrè, P. A.; Gaspardone, A.; Tomai, F.; Versaci, F., Angiographic evidence of cardiac ventricular diastolic suction, Am. J. Cardiol., 63, 376-378, (1989)
[17] Göktepe, S.; Menzel, A.; Kuhl, E., The generalized hill model: a kinematic approach towards active muscle contraction, J. Mech. Phys. Solids, 72, 20-39, (2014) · Zbl 1328.74063
[18] Hori, M.; Yeliin, E. L.; Sonnenblick, E. H., Left ventricular diastolic suction as a mechanism of ventricular filling: symposium on heart mechanics in diastole, Jpn. Circ. J., 46, 1, 124-129, (1982)
[19] Iribe, G.; Helmes, M.; Kohl, P., Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load, Am. J. Physiol., 292, 3, H1487-H1497, (2007)
[20] Jamalian, S.; Jafarnejad, M.; Zawieja, S. D.; Bertram, C. D.; Gashev, A. A.; Zawieja, D. C.; Davis, M. J.; Moore, J. E., Demonstration and analysis of the suction effect for pumping lymph from tissue beds at subatmospheric pressure, Sci. Rep., 7, 12080, (2017)
[21] Katz, L. N., The role played by the ventricular relaxation process in filling the ventricle, Am. J. Physiol., 95, 3, 542-553, (1930)
[22] Klotz, S.; Dickstein, M. L.; Burkhoff, D., A computational method of prediction of the end-diastolic pressure-volume relationship by single beat, Nat. Protoc., 2, 9, 2152-2158, (2007)
[23] Kocica, M. J.; Corno, A. F.; Carreras-Costa, F.; Ballester-Rodes, M.; Moghbel, M. C.; Cueva, C. N.C.; Lackovic, V.; Kanjuh, V. I.; Torrent-Guasp, F., The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium, Eur. J. Cardiothorac. Surg., 29, 21-40, (2006)
[24] Kovács, S. J.; Barzilai, B.; Pérez, J. E., Evaluation of diastolic function with doppler echocardiography: the PDF formalism, Am. J. Physiol., 252, 1, H178-H187, (1987)
[25] Kovács, S. J.; McQueen, D. M.; Peskin, C. S., Modelling cardiac fluid dynamics and diastolic function, Philos. Trans. R. Soc. London A, 359, 1783, 1299-1314, (2001) · Zbl 0994.92016
[26] Kovács, S. J.; Meisner, J. S.; Yellin, E. L., Modeling of diastole, Cardiol. Clin., 18, 3, 459-487, (2000)
[27] Kraner, J. C.; Ogden, E., Ventricular suction in the turtle, Circ. Res., 4, 6, 724-726, (1956)
[28] Nardinocchi, P.; Teresi, L., On the active response of soft living tissues, J. Elast., 88, 27-39, (2007) · Zbl 1115.74349
[29] Nardinocchi, P.; Teresi, L.; Varano, V., A simplified mechanical modeling for myocardial contractions and the ventricular pressure-volume relationships, Mech. Res. Commun., 38, 532-535, (2011) · Zbl 1272.74477
[30] Nardinocchi, P.; Teresi, L.; Varano, V., The elastic metric: a review of elasticity with large distortions, Int. J. Non-Linear Mech., 56, 34-42, (2013)
[31] Pagel, P. S.; Kehl, F.; Gare, M.; Hettrick, D. A.; Kersten, J. R.; Warltier, D. C., Mechanical function of the left atrium: new insights based on analysis of pressure-volume relations and doppler echocardiography, Anesthesiology, 98, 975-994, (2003)
[32] Pfeiffer, E. R.; Tangney, J. R.; Omens, J. H.; McCulloch, A. D., Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback, J. Biomech. Eng., 136, 021007-1-021007-11, (2014)
[33] Remme, E. W.; Opdahl, A.; Smiseth, O. A., Mechanics of left ventricular relaxation, early diastolic lengthening, and suction investigated in a mathematical model, Am. J. Physiol., 300, 5, H1678-H1687, (2011)
[34] Robinson, T. F.; Factor, S. M.; Sonnenblick, E. H., The heart as a suction pump, Sci. Am., 254, 6, 84-91, (1986)
[35] Rodriguez, E.; Hoger, A.; McCulloch, A., Stress dependent finite growth in soft elastic tissues, J. Biomech., 27, 455-464, (1994)
[36] Shah, A. M.; Lam, C. S., Function over form? Assessing the left atrium in heart failure (2014), Eur. Heart J., 36, 12, 711-714, (2015)
[37] Shaw, J. A.; Dasharathi, K.; Wineman, A. S.; Si, M., A simple model for myocardial changes in a failing heart, Int. J. Non Linear Mech., 68, 132-145, (2015)
[38] Sonnenblick, E. H., The structural basis and importance of restoring forces and elastic recoil for the filling of the heart, Eur. Heart J., 1, 107-110, (1980)
[39] Suga, H.; Goto, Y.; Igarashi, Y.; Yamada, O.; Nozawa, T.; Yasumura, Y., Ventricular suction under zero source pressure for filling, Am. J. Physiol., 251, 1, H47-H55, (1986)
[40] Tomai, F.; Gaspardone, A.; Versaci, F.; Gioffrè, P. A., Impaired diastolic suction during coronary angioplasty-reply, Eur. Heart J., 19, 968-971, (1998)
[41] Trainini, J. C.; Herrers, J., Is the heart a suction pump?, Revista Argentina de Cardiología, 79, 39-44, (2011)
[42] Vogel, S., Prime mover. A natural history of muscle, (2001), W.W. Norton & Company, 2001
[43] Wessells, N. K., Vertebrate structures and functions: readings from scientific american, (1974), San Francisco: W. H. Freeman
[44] Wiggers, C. J., Modern Aspects of Circulation in Health and Disease, (1915), Lea & Febiger: Lea & Febiger Philadelphia, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.