×

Analytical solutions for the thick-walled cylinder problem modeled with an isotropic elastic second gradient constitutive equation. (English) Zbl 1183.74082

Summary: Numerical modeling of localization phenomena shows that constitutive equations with internal length scale are necessary to properly model the post-localization behavior. Moreover, these models allow an accurate description of the scale effects observed in some phenomena like micro-indentation. This paper proposes some analytical results concerning a boundary value problem in a medium with microstructure. In addition to their own usefulness, such analytical solutions can be used in benchmark exercises for the validation of numerical codes. The paper focuses on the thick-walled cylinder problem, using a general small strain isotropic elastic second gradient model. The most general isotropic elastic model involving seven different constants is used and the expression of the analytical solutions is explicitly given. The influence of the microstructure is controlled by the internal length scale parameter. The classical macrostress is no more in equilibrium with the classical forces at the boundary. Double stresses are indeed also generated by the classical boundary conditions and, as far as the microstructure effects become predominant (i.e. the internal length scale is much larger than the thickness of the cylinder), the macrostresses become negligible. This leads to solutions completely different from classical elastic ones.

MSC:

74G05 Explicit solutions of equilibrium problems in solid mechanics
74B99 Elastic materials
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Abramowitz, M.; Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, (1972) · Zbl 0543.33001
[2] Aifantis, E.: On the microstructural origin of certain inelastic models, Transactions of ASME, journal of engineering materials and technology 106, 326-330 (1984)
[3] Bazant, Z.; Belytschke, T.; Chang, T.: Continuum theory for strain softening, Journal of engineering mechanics ASCE 110, 1666-1692 (1984)
[4] Bésuelle, P.; Chambon, R.; Collin, F.: Switching deformation modes in post-localization solutions with a quasi-brittle material, Journal of mechanics of materials and structures 1, No. 7, 1115-1134 (2006)
[5] Bleustein, J. L.: Effects of micro-structure on the stress concentration at a spherical cavity, International journal of solids and structures 2, 83-104 (1966)
[6] De Borst, R.; Muhlhaus, H.: Gradient dependent plasticity: formulation and algorithmic aspects, International journal for numerical methods in engineering 35, 521-539 (1992) · Zbl 0768.73019 · doi:10.1002/nme.1620350307
[7] Chambon, R.; Caillerie, D.; El Hassan, N.: Etude de la localisation unidimensionelle à l’aide d’un modèle de second gradient, Comptes rendus de l’académieédes sciences 323, No. IIb, 231-238 (1996) · Zbl 0919.73020
[8] Chambon, R.; Caillerie, D.; El Hassan, N.: One-dimensional localisation studied with a second grade model, European journal of mechanics – A/solids 17, No. 4, 637-656 (1998) · Zbl 0936.74020 · doi:10.1016/S0997-7538(99)80026-6
[9] Chambon, R.; Caillerie, D.; Matsushima, T.: Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies, International journal of solids and structures 38, 8503-8527 (2001) · Zbl 1047.74522 · doi:10.1016/S0020-7683(01)00057-9
[10] Chambon, R.; Caillerie, D.; Tamagnini, C.: A strain space gradient plasticity theory for finite strain, Computer methods in applied mechanics and engineering 193, 2797-2826 (2004) · Zbl 1329.74049
[11] Cosserat, E.; Cosserat, F.: Théorie des corps deformables, (1909) · JFM 40.0862.02
[12] Eshel, N. N.; Rosenfeld, G.: Effects of strain-gradient on the stress-concentration at a cylindrical hole in a field of uniaxial tension, Journal of engineering mathematics 4, 97-111 (1970) · Zbl 0198.57702 · doi:10.1007/BF01535082
[13] Eshel, N. N.; Rosenfeld, G.: Axi-symmetric problems in elastic materials of grade two, Journal of the franklin institute 299, 43-51 (1975) · Zbl 0322.73002 · doi:10.1016/0016-0032(75)90083-6
[14] Fleck, N. A.; Hutchinson, J. W.: Strain gradient plasticity, Advances in applied mechanics 33, 295-361 (1997) · Zbl 0894.73031
[15] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W.: Strain gradient plasticity: theory and experiment, Acta metallurgica et materialia 42, 475-487 (1994)
[16] Forest, S.; Sievert, R.: Nonlinear microstrain theories, International journal of solids and structures 43, 7224-7245 (2006) · Zbl 1102.74003 · doi:10.1016/j.ijsolstr.2006.05.012
[17] Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus: première partie: théorie du second gradient, Journal de mécanique 12, 235-274 (1973) · Zbl 0261.73003
[18] Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure, SIAM journal on applied mathematics 25, 556-575 (1973) · Zbl 0273.73061 · doi:10.1137/0125053
[19] Matsushima, T.; Chambon, R.; Caillerie, D.: Large strain finite element analysis of local second gradient models, application to localization, International journal for numerical methods in engineering 54, 499-521 (2002) · Zbl 1098.74705 · doi:10.1002/nme.433
[20] Mindlin, R. D.: Micro-structure in linear elasticity, Archive for rational mechanics and analysis 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[21] Mindlin, R. D.: Second gradient of strain and surface-tension in linear elasticity, International journal of solids and structures 1, 417-738 (1965)
[22] Nix, W.; Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity, Journal of the mechanics and physics of solids 46, 411-425 (1997) · Zbl 0977.74557 · doi:10.1016/S0022-5096(97)00086-0
[23] Rashid, K.; Al-Rub, Abu; Voyiadjis, G.: Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments, International journal of plasticity 20, 1139-1182 (2004)
[24] Shu, J.; King, W.; Fleck, N.: Finite elements for materials with strain gradient effects, International journal for numerical methods in engineering 44, 373-391 (1999) · Zbl 0943.74072 · doi:10.1002/(SICI)1097-0207(19990130)44:3<373::AID-NME508>3.0.CO;2-7
[25] Sulem, J.; Cerrolaza, M.: Finite element analysis of the indentation test on rocks with microstructure, Computers and geotechnics 29, 95-117 (2002)
[26] Toupin, R.: Elastic materials with couple – stresses, Archive for rational mechanics and analysis 11, 385-414 (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[27] Vardoulakis, I.; Sulem, J.: Bifurcation analysis in geomechanics, (1995) · Zbl 0900.73645
[28] Zhao, J.; Sheng, D.; Sloan, S.: Cavity expansion of a gradient-dependent solid cylinder, International journal of solids and structures 44, 4342-4368 (2007) · Zbl 1161.74014 · doi:10.1016/j.ijsolstr.2006.11.023
[29] Zhao, J.; Pedroso, D.: Strain gradient theory in orthogonal curvilinear coordinates, International journal of solids and structures 45, 3507-3520 (2008) · Zbl 1169.74334 · doi:10.1016/j.ijsolstr.2008.02.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.