×

zbMATH — the first resource for mathematics

Interactions and excitations of nonabelian vortices. (English) Zbl 1050.81560
Summary: We examine bosonic zero modes of vortices formed in the gauge breaking \(G\to H\). For nonabelian \(G\), zero modes are generic. Their solutions depend on global symmetry structure. Vortices render the embedding \(H\subset G\) space dependent, with a dynamically determined subgroup \(\tilde H\) single valued. They Aharonov-Bohm scatter gauge bosons associated with multivalued generators. Alice strings \((H=\text{O}(2),\tilde H=\mathbb{Z}_ 2)\) attract charges and scatter SO(2) ‘photons,’ and a two-string system has zero modes with unlocalizable ‘Cheshire’ charge. The resulting superconductivity has novel electrodynamics.

MSC:
81R40 Symmetry breaking in quantum theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81V05 Strong interaction, including quantum chromodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Witten, Nucl. Phys. B249 pp 557– (1985) · doi:10.1016/0550-3213(85)90022-7
[2] M. G. Alford, Nucl. Phys. B328 pp 140– (1989) · doi:10.1016/0550-3213(89)90096-5
[3] A. S. Schwarz, Nucl. Phys. B208 pp 141– (1982) · doi:10.1016/0550-3213(82)90190-0
[4] P. Nelson, Nucl. Phys. B237 pp 1– (1984) · doi:10.1016/0550-3213(84)90013-0
[5] M. G. Alford, Phys. Rev. Lett. 62 pp 1071– (1989) · doi:10.1103/PhysRevLett.62.1071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.