×

The normal and oblique collision of a dipole with a no-slip boundary. (English) Zbl 1160.76328

Summary: Benchmark results are reported of two separate sets of numerical experiments on the collision of a dipole with a no-slip boundary at several Reynolds numbers. One set of numerical simulations is performed with a finite differences code while the other set concerns simulations conducted with a Chebyshev pseudospectral code. Well-defined initial and boundary conditions are used and the accuracy and convergence of the numerical solutions have been investigated by inspection of several global quantities like the total kinetic energy, the enstrophy and the total angular momentum of the flow, and the vorticity distribution and vorticity flux at the no-slip boundaries. It is found that the collision of the dipole with the no-slip wall and the subsequent flow evolution is dramatically influenced by small-scale vorticity produced during and after the collision process. The trajectories of several coherent vortices are tracked during the simulation and show that in particular underresolved high-amplitude vorticity patches near the no-slip walls are potentially responsible for deteriorating accuracy of the computations in the course of time. Our numerical simulations clearly indicate that it is extremely difficult to obtain mode- or grid-convergence for this seemingly rather simple two-dimensional vortex-wall interaction problem.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M20 Finite difference methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Clercx, H. J.H.; Nielsen, A. H., Vortex statistics for turbulence in a container with rigid boundaries, Phys Rev Lett, 85, 752-755 (2000)
[2] Clercx, H. J.H.; van Heijst, G. J.F., Dissipation of kinetic energy in two-dimensional bounded flows, Phys Rev E, 65, 066305 (2002), (1-4) · Zbl 1185.76235
[3] Orlandi, P., Vortex dipole rebound from a wall, Phys Fluids A, 2, 1429-1436 (1990)
[4] Ould-Salihi, M. L.; Cottet, G.-H.; El Hamraoui, M., Blending finite-difference and vortex methods for incompressible flow computations, SIAM J Sci Comput, 22, 1655-1674 (2000) · Zbl 0993.76057
[5] Cottet, G.-H.; Koumoutsakos, P.; Ould Salihi, M. L., Spatially varying cores for viscous vortex methods, J Comput Phys, 162, 164-185 (2000) · Zbl 1006.76070
[6] Kravchenko, A. G.; Moin, P.; Moser, R., Zonal embedded grids for numerical simulations of wall-bounded turbulent flows, J Comput Phys, 127, 412-423 (1996) · Zbl 0862.76062
[7] Cottet, G.-H.; Koumoutsakos, P., Vortex methods: Theory and practice (2000), Cambridge University Press: Cambridge University Press Cambridge, UK
[8] Angot, Ph.; Bruneau, Ch.-H.; Fabrie, P., A penalization method to take into account obstacles in an incompressible flow, Numer Math, 81, 497-520 (1999) · Zbl 0921.76168
[9] Kevlahan, N. K.; Ghidaglia, J. M., Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, Eur J Mech B/Fluids, 20, 333-350 (2001) · Zbl 1020.76037
[10] Fadlun, E. A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary/finite-difference methods for three-dimensional complex flow simulations, J Comput Phys, 161, 35-60 (2000) · Zbl 0972.76073
[11] Bruneau Ch-H, Saad M. The 2D lid-driven cavity problem revisited. Comput Fluids, in press doi:10.1016/j.compfluid.2004.12.004; Bruneau Ch-H, Saad M. The 2D lid-driven cavity problem revisited. Comput Fluids, in press doi:10.1016/j.compfluid.2004.12.004 · Zbl 1099.76043
[12] Bruneau, Ch.-H.; Jouron, C., An efficient scheme for solving steady incompressible Navier-Stokes equations, J Comput Phys, 89, 389-413 (1990) · Zbl 0699.76034
[13] Clercx, H. J.H., A spectral solver for the Navier-Stokes equations in the velocity-vorticity formulation for flows with two non-periodic directions, J Comput Phys, 137, 186-211 (1997) · Zbl 0904.76058
[14] Daube, O., Resolution of the 2D Navier-Stokes equations in velocity-vorticity form by means of an influence matrix technique, J Comput Phys, 103, 402-414 (1992) · Zbl 0763.76046
[15] Orszag, S. A., Numerical methods for the simulation of turbulence, Phys Fluids, 12, Suppl II, 250-257 (1969) · Zbl 0217.25803
[16] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral methods in fluid dynamics (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0636.76009
[17] Lamb, H., Hydrodynamics (1932), Cambridge University Press: Cambridge University Press Cambridge, UK · JFM 26.0868.02
[18] Coutsias, E. A.; Lynov, J. P., Fundamental interactions of vortical structures with boundary layers in two-dimensional flows, Physica D, 51, 482-497 (1991) · Zbl 0735.76023
[19] Ersoy, S.; Walker, J. D.A., Flow induced at a wall by a vortex pair, AIAA J, 24, 1597-1605 (1986)
[20] Coutsias, E. A.; Lynov, J. P.; Nielsen, A. H.; Nielsen, M.; Juul Rasmussen, J.; Stenum, B., Vortex dipoles colliding with curved walls, (Christiansen, P. L.; etal., Future directions of nonlinear dynamics in physical and biological systems (1993), Plenum Press: Plenum Press New York), 51-54 · Zbl 0900.35289
[21] Verzicco, R.; Flór, J. B.; van Heijst, G. J.F.; Orlandi, P., Numerical and experimental study of the interaction between a vortex dipole and a circular cylinder, Exp Fluids, 18, 153-163 (1995)
[22] Bruneau Ch-H. On the large-Reynolds-number 2D dipole-wall collision benchmark. In: Proceedings of BAIL2002, Perth, Australia, 2002, p. 55-60.; Bruneau Ch-H. On the large-Reynolds-number 2D dipole-wall collision benchmark. In: Proceedings of BAIL2002, Perth, Australia, 2002, p. 55-60.
[23] Kravchenko, A. G.; Moin, P.; Shariff, K., B-spline method and zonal grids for simulations of complex turbulent flows, J Comput Phys, 151, 757-789 (1999) · Zbl 0942.76058
[24] Clercx, H. J.H.; van Heijst, G. J.F., Energy spectra for decaying two-dimensional turbulence in a bounded domain, Phys Rev Lett, 85, 306-309 (2000)
[25] Wells MG, Clercx HJH, van Heijst GJF. Vortices in oscillating spin-up. J Fluid Mech, submitted for publication.; Wells MG, Clercx HJH, van Heijst GJF. Vortices in oscillating spin-up. J Fluid Mech, submitted for publication. · Zbl 1108.76325
[26] Schneider, K.; Farge, M., Coherent vortex simulation of an impulsively started cylinder at Re=3000 using an adaptive wavelet method with penalisation, (Castro, I. P.; Hancock, P. E.; Thomas, T. G., Advances in turbulence IX (2002), CIMNE: CIMNE Barcelona), 471-474
[27] Schneider K, Paget-Goy M, Pellegrino G, Verga A, Farge M. Direct numerical simulation of an impulsively started, or uniformly accelerated, plate using adaptive wavelet and Fourier methods with penalisation. In: Proceedings of the Third International Symposium on Turbulence and Shear Flow Phenomena, Sendai, Japan, 2003. p. 407-12.; Schneider K, Paget-Goy M, Pellegrino G, Verga A, Farge M. Direct numerical simulation of an impulsively started, or uniformly accelerated, plate using adaptive wavelet and Fourier methods with penalisation. In: Proceedings of the Third International Symposium on Turbulence and Shear Flow Phenomena, Sendai, Japan, 2003. p. 407-12.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.