×

A benchmark study on problems related to CO\(_{2}\) storage in geologic formations. Summary and discussion of the results. (English) Zbl 1190.86011

Summary: This paper summarises the results of a benchmark study that compares a number of mathematical and numerical models applied to specific problems in the context of carbon dioxide (CO\(_{2}\)) storage in geologic formations. The processes modelled comprise advective multi-phase flow, compositional effects due to dissolution of CO\(_{2}\) into the ambient brine and non-isothermal effects due to temperature gradients and the Joule-Thompson effect. The problems deal with leakage through a leaky well, methane recovery enhanced by CO\(_{2}\) injection and a reservoir-scale injection scenario into a heterogeneous formation. We give a description of the benchmark problems then briefly introduce the participating codes and finally present and discuss the results of the benchmark study.

MSC:

86A60 Geological problems
86-08 Computational methods for problems pertaining to geophysics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Universität Stuttgart: Workshop on Numerical Models for CO2 Storage in Geological Formations, 2–4 April 2008. http://www.hydrosys.uni-stuttgart.de/co2-workshop (2008)
[2] Assteerawatt, A., Bastian, P., Bielinski, A., Breiting, T., Class, H., Ebigbo, A., Eichel, H., Freiboth, S., Helmig, R., Kopp, A., Niessner, J., Ochs, S.O., Papafotiou, A., Paul, M., Sheta, H., Werner, D., Ölmann, U.: MUFTE-UG: structure, applications and numerical methods. Newsletter, International Groundwater Modeling Centre, Colorado School of Mines 23(2) (2005)
[3] Audigane, P., Gaus, I., Czernichowski, L.I., Pruess, K., Xu, T.: Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the sleipner site, North Sea. Am. J. Sci. 307(7), 974–1008 (2007) · doi:10.2475/07.2007.02
[4] Audigane, P., Oldenburg, C.M., Van der Meer, B., Geel, K., Lions, J., Gaus, I., Robelin, C., Durst, P., Xu, T.: Geochemical modeling of the CO2 injection into a methane gas reservoir at the k12-b field, North Sea. In: Grobe, M., Pashin, J.C., Dodge, R.L. (eds.) AAPG Studies in Geology, Special Publication on Carbon Dioxide Sequestration in Geological Media–State of Science (2008)
[5] Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P., Mathiassen, O.M.: CO2 storage capacity estimation: methodology and gaps. Int. J. Greenh. Gas Control 1, 430–443 (2007) · doi:10.1016/S1750-5836(07)00086-2
[6] Balay, S., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B., Zhang, H.: Petsc Users Guide. Rep. anl-95/11, Revision 2.3.2 (2006)
[7] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for adaptive and parallel scientific computing. Part I: abstract framework. Computing 82, 103–119 (2008) · Zbl 1151.65089 · doi:10.1007/s00607-008-0003-x
[8] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for adaptive and parallel scientific computing. Part II: implementation and tests in DUNE. Computing 82, 103–119 (2008) · Zbl 1151.65089 · doi:10.1007/s00607-008-0003-x
[9] Bielinski, A., Kopp, A., Schütt, H., Class, H.: Monitoring of CO2 plumes during storage in geological formations using temperature signals: numerical investigation. Int. J. Greenh. Gas Control 2, 319–328 (2008) · doi:10.1016/j.ijggc.2008.02.008
[10] Brooks, A.N., Corey, A.T.: Hydraulic properties of porous media. In: Hydrol. Pap.. Fort Collins, Colorado State University (1964)
[11] Cao, H.: Development of techniques for general purpose simulators. Ph.D. thesis, Stanford University (2002)
[12] Chen, Z., Ewing, R., Qin, G.: Analysis of a compositional model for fluid flow in porous media. SIAM J. Appl. Math. 60(3), 747–777 (2000) · Zbl 0953.35071 · doi:10.1137/S0036139998333427
[13] Chen, Z., Huan, G., Wang, H.: Simulation of a compositional model for multiphase flow in porous media. Numer. Methods Partial Diff. Equ. 21(4), 726–741 (2004) · Zbl 1103.76038 · doi:10.1002/num.20059
[14] Class, H., Helmig, R., Bastian, P.: Numerical simulation of nonisothermal multiphase multicomponent processes in porous media–1. An efficient solution technique. Adv. Water Resour. 25, 533–550 (2002) · doi:10.1016/S0309-1708(02)00014-3
[15] Coats, K.H., Dempsey, J.R., Henderson, J.H.: The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir performance. Soc. Pet. Eng. J. 11(1), 63–71 (1971)
[16] Computer Modelling Group: GEM User Guide. http://www.cmgroup.com/software/brochures/GEM_FactSheet.pdf (2006)
[17] Dawson, C.: Godunov mixed methods for advection-diffusion equations in multi-dimensions. SIAM J. Numer. Anal. 30(5), 1315–1332 (1993) · Zbl 0791.65062 · doi:10.1137/0730068
[18] Dawson, C.N., Wheeler, M.F.: The Mathematics of Finite Elements and Applications, pp. 463–482. Academic, London (1987)
[19] Doughty, C., Benson, S.M., Pruess, K.: Capacity investigation of brine-bearing sands for geologic sequestrations of CO2. Technical report, Berkeley (2001)
[20] Ebigbo, A., Class, H., Helmig, R.: CO2 leakage through an abandoned well: problem-oriented benchmarks. Comput. Geosci. 11, 103–115 (2007) · Zbl 1147.86316 · doi:10.1007/s10596-006-9033-7
[21] Eigestad, G.T., Dahle, H.K., Hellevang, B., Johansen, W.T., Riis, F., Øian, E.: Geologic modeling and simulation of CO2 injection in the Johansen formation. Comput. Geosci. (2009). doi: 10.1007/s10596-009-9138-x · Zbl 1190.86012
[22] Fan, Y.: Development of CO2 sequestration modeling capabilities in Stanford general purpose research simulator. Master’s thesis, Stanford University (2006)
[23] Flemisch, B., Fritz, J., Helmig, R., Niessner, J., Wohlmuth, B.: DUMUX: a multi-scale multi-physics toolbox for flow and transport processes in porous media. In: Ibrahimbegovic, A., Dias, F. (eds.) ECCOMAS Thematic Conference on Multi-scale Computational Methods for Solids and Fluids, Cachan, 28–30 November 2007
[24] Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Numerical methods for geological CO2 sequestration: vertical equilibrium with subscale analytical model. Comput. Geosci. (2009, in press) · Zbl 1190.86013
[25] Gong, B.: Effective models of fractured systems. Ph.D. thesis, Stanford University (2007)
[26] Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface–A Contribution to the Modeling of Hydrosystems. Springer, New York (1997)
[27] Hurter, S., Labregere, D., Berge, J.: Simulations for CO2 injection projects with compo-sitional simulator. In: Proceedings of the Offshore Europe 2007 Conference, vol. SPE 108540, 8 pp, Aberdeen, 4–7 September 2007
[28] IPCC: Special report on carbon dioxide capture and storage. Technical report, Intergovernmental Panel on Climate Change (IPCC), prepared by Working Group III. Cambridge University Press, Cambridge (2005)
[29] Jiang, Y.: Techniques for modeling complex reservoirs and advanced wells. Ph.D. thesis, Stanford University (2007)
[30] Juanes, R., Spiteri, E.J., Orr, F.M., Blunt, M.J.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42 (2006)
[31] Kirk, B., Peterson, J.W., Stogner, R.H., Carey, G.F.: libmesh: a C++ library for parallel adaptive mesh refinement/ coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006) · Zbl 05192775 · doi:10.1007/s00366-006-0049-3
[32] Kopp, A., Class, H., Helmig, R.: Investigations on CO2 storage capacity in saline aquifers: part 1. Dimensional analysis of flow processes and reservoir characteristics. Int. J. Greenh. Gas Control (2008). doi: 10.1016/j.ijgcc.2008.10.002
[33] Kopp, A., Class, H., Helmig, R.: Investigations on CO2 storage capacity in saline aquifers, part 2: estimation of storage capacity coefficients. Int. J. Greenh. Gas Control (2008). doi: 10.1016/j.ijgcc.2008.10.001
[34] Los Alamos Grid Toolbox, LaGriT, Los Alamos National Laboratory (2008). http://lagrit.lanl.gov
[35] Lake, L.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)
[36] Land, C.S.: Calculation of imbibition relative permeabilities for two- and three-phase flow from rock properties. Soc. Pet. Eng. J. 243, 149–156 (1968)
[37] Le Gallo, Y., Bildstein, O., Brosse, E.: Coupled reaction-flow modeling of diagenetic changes in reservoir permeability, porosity and mineral compositions. J. Hydrol. 209(1–4), 366–388 (1998) · doi:10.1016/S0022-1694(98)00183-8
[38] Le Gallo, Y., Trenty, L., Michel, A., Vidal-Gilbert, S., Parra, T., Jeannin, L.: Long-term flow simulation of CO2 storage in saline aquifer. In: Proceedings of GHGT-8, Trondheim, 19–23 June 2006. IEA
[39] Nordbotten, J.M., Celia, M.A.: An improved analytical solution for interface upconing around a well. Water Resour. Res. 42, W08433 (2006). doi: 10.1029/2005WR004738 · doi:10.1029/2005WR004738
[40] Nordbotten, J.M., Celia, M.A.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006) · Zbl 1157.76317 · doi:10.1017/S0022112006000802
[41] Nordbotten, J.M., Celia, M.A., Bachu, S.: Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40(4), W04204 (2004) · doi:10.1029/2003WR002997
[42] Nordbotten, J.M., Celia, M.A., Bachu, S., Dahle, H.: Semi-analytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39(2), 602–611 (2005) · doi:10.1021/es035338i
[43] Nordbotten, J.M., Kavetski, D., Celia, M.A., Bachu, S.: A semi-analytical model estimating leakage associated with CO2 storage in large-scale multi-layered geological systems with multiple leaky wells. Environ. Sci. Technol. 43(3), 743–749 (2009) · doi:10.1021/es801135v
[44] Oldenburg, C., Stevens, S., Benson, S.: Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR). Energy 29, 1413–1422 (2004) · doi:10.1016/j.energy.2004.03.075
[45] Oldenburg, C.M., Benson, S.M.: CO2 injection for enhanced gas production and carbon sequestration. Technical report, Society of Petroleum Engineers (2002)
[46] Oldenburg, C.M., Moridis, G.J., Spycher, N., Pruess, K.: EOS7C version 1.0: TOUGH2 module for carbon dioxide or nitrogen in natural gas (methane) reservoirs. Technical Report LBNL-56589, Lawrence Berkeley National Laboratory (2004)
[47] Pawar, R.J., Zyvoloski, G.A., Temma, N., Sakamoto, Y., Komai, T.: Numerical simulation of laboratory experiment on methane hydrate dissociation. In: Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul (2005)
[48] Peng, D., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. 15(1), 59–64 (1976)
[49] Pruess, K.: The TOUGH codes–a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J. 3, 738–746 (2004)
[50] Pruess, K., Bielinski, A., Ennis-King, J., Fabriol, R., Le Gallo, Y., Garcia, J., Jessen, K., Kovscek, T., Law, D.H.-S., Lichtner, P., Oldenburg, C., Pawar, R., Rutqvist, J., Steefel, C., Travis, B., Tsang, C.-F., White, S., Xu, T.: Code intercomparison builds confidence in numerical models for geologic disposal of CO2. In: Gale, J., Kaya, Y., (eds.) GHGT-6 Conference Proceedings: Greenhouse Gas Control Technologies, pp. 463–470, Kyoto (2003)
[51] Pruess, K., Spycher, N.: ECO2N–a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers, energy conversion and management. Energy Convers. Manag. 48(6), 1761–1767 (2007). doi: 10.1016/j.enconman.2007.01.016 · doi:10.1016/j.enconman.2007.01.016
[52] Robinson, B.A., Viswanathan, H.S., Valocchi, A.J.: Efficient numerical techniques for modeling multi-component ground-water transport based upon simultaneous solution of strongly coupled subsets of chemical components. Adv. Water Res. 23, 307–324 (2000) · doi:10.1016/S0309-1708(99)00034-2
[53] Sarma, P.: Efficient closed-loop optimal control of petroleum reservoirs under uncertainty. Ph.D. thesis, Stanford University (2006)
[54] Sbai, M.A.: A double porosity–double permeability model of the Bouillante geothermal production field (Guadeloupe). Technical Report RP-55418-FR, BRGM (2007) (in French)
[55] Sbai, M.A., Azaroual, M.: A numerical model for miscible displacement of multi-component reactive species. In: Miller, C.T., Farthing, M.W., Gray, W.G., Pinder, G.F. (eds.) Computational Methods in Water Resources (CMWR XV), vol. 1(48), pp. 850–860. Elsevier, Amsterdam (2004)
[56] Sbai, M.A., Azaroual, M., Menjoz, A.: Numerical solution of the mixed thermodynamics and kinetic geochemical equations in RTAFF 1–assessment of couplings between geochemistry and transport. Technical Report RP-53001-FR, BRGM (2004) (in French)
[57] Schlumberger: Eclipse Technical Description 2007.1 (2007)
[58] Seo, J.G., Mamora, D.D.: Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs. Energy Resour. Technol. 127 (2005)
[59] Spiteri, E.J., Juanes, R., Blunt, M.J., Orr, F.M., Jr.: Relative permeability hysteresis: trapping models and application to geological CO2 sequestration. Technical report, Society of Petroleum Engineers (2005)
[60] Spycher, N., Pruess, K.: CO2-H2O mixtures in the geological sequestration of CO2. ii. Partitioning in chloride brines at 12–100{\(\deg\)}C and up to 600 bar. Geochim. et Cosmochim. Acta 69(13), 3309–3320 (2005) · doi:10.1016/j.gca.2005.01.015
[61] Spycher, N., Pruess, K., Ennis-King, J.: CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100{\(\deg\)}C and up to 600 bar. Geochim. Cosmochim. Acta 67(16), 3015–3031 (2003) · doi:10.1016/S0016-7037(03)00273-4
[62] Tenma, N., Yamaguchi, T., Zyvoloski, G.: The Hijori hot dry rock test site, Japan. evaluation and optimization of heat extraction from a two-layered reservoir. Geothermics 37(1), 19–52 (2008) · doi:10.1016/j.geothermics.2007.11.002
[63] Tillier, E., Michel, A., Trenty, L.: Coupling a multiphase flow model and a reactive transport model for CO2 storage modeling. In: Comp. Meth. for Coupled Problems in Science and Engineering (2007)
[64] Trenty, L., Michel, A., Tillier, E., Le Gallo, Y.: A sequential splitting strategy for CO2 storage modelling. In: Proceedings of 10th European Conference on the Mathematics of Oil Recovery, Amsterdam. EAGE (2006)
[65] van der Meer, B.: Carbon dioxide storage in natural gas reservoirs. Oil Gas Sci. Technol. 60(3), 527–536 (2005) · doi:10.2516/ogst:2005035
[66] Wei, L.: Estimate CO2 storage capacity of the Johansen formation: numerical investigation beyond the benchmarking exercise. Comput. Geosci. (2009). doi: 10.1007/s10596-008-9122-x · Zbl 1190.86015
[67] Wheeler, J., Wheeler, M.F., et al.: Integrated parallel and accurate reservoir simulator. Technical report, TICAM01-25, CSM, University of Texas at Austin (2001) · Zbl 1071.76583
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.