×

Exploitation of the second law: Coleman-Noll and Liu procedure in comparison. (English) Zbl 1186.80004

The authors consider the balance of internal energy \(\overset{.}{\varepsilon }+\text{div}\,\mathbf{q}-r=0\) for a material at rest. Here \(\varepsilon \) is the internal energy density, \(\mathbf{q}\) is the heat flux and \(r\) is the heat supply density. The second law is expressed as \(\sigma _{S}=\overset{.}{ s}+\text{div}\,\mathbf{J}_{s}-r_{s}\geq 0\), where \(s\) means the entropy density, \(\mathbf{J}_{s}\) is the entropy flux and \(r_{s}\) is the entropy supply density. The authors then specialize to a rigid heat conductor whose constitutive state space is spanned by the internal energy \(\varepsilon \) and vector fields \(\mathbf{z}\), which do not contain the derivative of this internal energy. The authors derive the Coleman-Noll inequality through some substitution of values and Liu’s inequality when introducing a Lagrange-Farkas multiplier \(-\lambda (\varepsilon ,\mathbf{z})\).
The first main result proves the equivalence between these two inequalities. The authors then repeat the study, but now assuming that the thermodynamic state space is spanned by the set of variables \(\varepsilon \), \(\mathbf{z}\), \( \nabla \varepsilon \) and \(\nabla \mathbf{z}\). An equivalence result also holds true. As a last example, they consider the case where the thermodynamic state space is spanned by the set of variables \(\varepsilon \), \(\nabla \varepsilon \), \(\alpha \) and \(\nabla \alpha \), for some internal variable \(\alpha \) satisfying a partial differential equation \(\overset{.}{ \alpha }=f(\alpha ,\nabla \alpha )\). Here the Lagrange-Farkas multipliers must be linked through linear relations in order to satisfy the equivalence between the two inequalities. In the conclusion, the authors briefly discuss the advantages of the Coleman-Noll technique and of Liu’s procedure.

MSC:

80A17 Thermodynamics of continua
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1063/1.1725257 · doi:10.1063/1.1725257
[2] DOI: 10.1016/S0377-0257(00)00141-5 · Zbl 1060.82507 · doi:10.1016/S0377-0257(00)00141-5
[3] Muschik W., J. Non-Equilib. Thermodyn. 21 pp 175– (1996) · Zbl 0877.73004 · doi:10.1515/jnet.1996.21.2.175
[4] DOI: 10.1007/BF00281561 · Zbl 0157.56703 · doi:10.1007/BF00281561
[5] DOI: 10.1080/02678299308027831 · doi:10.1080/02678299308027831
[6] DOI: 10.1016/0020-7225(83)90056-3 · Zbl 0513.73002 · doi:10.1016/0020-7225(83)90056-3
[7] DOI: 10.1007/BF01262690 · Zbl 0113.17802 · doi:10.1007/BF01262690
[8] Liu I-S., Arch. Rat. Mech. Anal. 46 pp 131– (1972)
[9] DOI: 10.1515/JNETDY.2006.014 · Zbl 1119.80001 · doi:10.1515/JNETDY.2006.014
[10] DOI: 10.1007/s001610100063 · Zbl 0992.80001 · doi:10.1007/s001610100063
[11] Ván P., Periodica Polytechnica Ser. Mech. Eng. 49 pp 79– (2005)
[12] DOI: 10.1515/JNETDY.2002.019 · Zbl 1161.80301 · doi:10.1515/JNETDY.2002.019
[13] DOI: 10.1515/jnet.1983.8.3.201 · doi:10.1515/jnet.1983.8.3.201
[14] DOI: 10.1515/jnet.1991.16.2.179 · doi:10.1515/jnet.1991.16.2.179
[15] DOI: 10.1063/1.1711937 · doi:10.1063/1.1711937
[16] DOI: 10.1002/andp.200310002 · Zbl 1031.80001 · doi:10.1002/andp.200310002
[17] DOI: 10.1515/jnet.1994.19.3.217 · Zbl 0808.73006 · doi:10.1515/jnet.1994.19.3.217
[18] DOI: 10.1515/jnet.1994.19.3.250 · doi:10.1515/jnet.1994.19.3.250
[19] DOI: 10.1007/BF01171416 · Zbl 0858.73007 · doi:10.1007/BF01171416
[20] DOI: 10.1063/1.2101087 · Zbl 1111.80001 · doi:10.1063/1.2101087
[21] DOI: 10.1016/j.ijsolstr.2004.05.054 · Zbl 1059.74020 · doi:10.1016/j.ijsolstr.2004.05.054
[22] DOI: 10.1007/s00161-004-0195-z · Zbl 1109.80001 · doi:10.1007/s00161-004-0195-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.