zbMATH — the first resource for mathematics

Note on group irregularity strength of disconnected graphs. (English) Zbl 1390.05200
Summary: We investigate the group irregularity strength (\(s_g(G)\)) of graphs, i.e. the smallest value of \(s\) such that taking any abelian group of order \(s\), there exists a function \(f : E(G) \rightarrow \mathcal{G}\) such that the sums of edge labels at every vertex are distinct. So far it was not known if \(s_g(G)\) is finite for disconnected graphs. In the paper we present some upper bound for all graphs. Moreover we give the exact values and bounds on \(s_g(G)\) for disconnected graphs without a star as a component.

05C78 Graph labelling (graceful graphs, bandwidth, etc.)
05C22 Signed and weighted graphs
Full Text: DOI
[1] Aigner M., Triesch E., Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990), 439-449. · Zbl 0735.05049
[2] Amar D., Togni O., Irregularity strength of trees, Discrete Math. 190 (1998), 15-38. · Zbl 0956.05092
[3] Anholcer M., Cichacz S., Group irregular labelings of disconnected graphs, Contributions to Discrete Mathematics 12(2) (2017), 158-166. · Zbl 1376.05133
[4] Anholcer M., Cichacz S., Milanič M., Group irregularity strength of connected graphs, J. Comb. Optim. 30 (2015), 1-17. · Zbl 1316.05078
[5] Chartrand G., Jacobson M.S., Lehel J., Oellermann O., Ruiz S., Saba F., Irregular networks, Congr. Numer. 64 (1988), 187-192.
[6] Cichacz S., Zero sum partition into sets of the same order and its applications, Electronic Journal of Combinatorics 25(1) (2018), #P1.20. · Zbl 1380.05099
[7] Ferrara M., Gould R.J., Karoński M., Pfender F., An iterative approach to graph irregularity strength, Discrete Appl. Math. 158 (2010), 1189-1194. · Zbl 1213.05119
[8] Fujie-Okamoto F., Jones R., Kolasinski K., Zhang P., On Modular Edge-Graceful Graphs, Graphs Combin. 29 (2013), 901-912. · Zbl 1268.05174
[9] Gallian J., Contemporary Abstract Algebra, seventh ed., Brooks/Cole Cengage Learning, 2010.
[10] Jones R., Modular and Graceful Edge Colorings of Graphs, Ph.D. thesis, Western Michigan University, 2011, 158 pp.
[11] Jones R., Zhang P., Nowhere-zero modular edge-graceful graphs, Discuss. Math. Graph Theory 32 (2012), 487-505. · Zbl 1257.05151
[12] Kalkowski M., Karoński M., Pfender F., A New Upper Bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011), 1319-1321. · Zbl 1237.05183
[13] Kaplan G., Lev A., Roditty Y., On zero-sum partitions and anti-magic trees, Discrete Math. 309 (2009), 2010-2014. · Zbl 1229.05031
[14] Lehel J., Facts and quests on degree irreglar assignments, Graph Theory, Combinatorics and Applications, Wiley, New York, 1991, 765-782. · Zbl 0841.05052
[15] Majerski P., Przybyło J., On the irregularity strength of dense graphs, SIAM J. Discrete Math. 28(1) (2014), 197-205. · Zbl 1293.05341
[16] Togni O., Force des graphes. Indice optique des réseaux, Thèse présentée pour obtenir le grade de docteur, Université de Bordeaux 1, École doctorale de mathematiques et ďinformatique (1998), 141 pp.
[17] Zeng X., On zero-sum partitions of abelian groups. Integers 15 (2015), Paper No. A44, 16 pp. · Zbl 1348.11022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.