×

Imprints of Schwinger effect on primordial spectra. (English) Zbl 1415.85004

Summary: We study the Schwinger effect during inflation and its imprints on the primordial power spectrum and bispectrum. The produced charged particles by Schwinger effect during inflation can leave a unique angular dependence on the primodial spectra.

MSC:

85A40 Astrophysical cosmology
83F05 Relativistic cosmology
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
85A15 Galactic and stellar structure
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.82 (1951) 664 [INSPIRE]. · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
[2] A. Di Piazza, C. Muller, K.Z. Hatsagortsyan and C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys.84 (2012) 1177 [arXiv:1111.3886] [INSPIRE]. · doi:10.1103/RevModPhys.84.1177
[3] R. Ruffini, G. Vereshchagin and S.-S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes, Phys. Rept.487 (2010) 1 [arXiv:0910.0974] [INSPIRE]. · doi:10.1016/j.physrep.2009.10.004
[4] W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Dynamics of relaxed inflation, JHEP02 (2018) 084 [arXiv:1706.03072] [INSPIRE]. · Zbl 1387.83142 · doi:10.1007/JHEP02(2018)084
[5] W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Relaxed inflation, arXiv:1706.00438 [INSPIRE]. · Zbl 1387.83142
[6] T.E. Clarke, P.P. Kronberg and H. Boehringer, A new radio — X-ray probe of galaxy cluster magnetic fields, Astrophys. J.547 (2001) L111 [astro-ph/0011281] [INSPIRE].
[7] F. Govoni and L. Feretti, Magnetic field in clusters of galaxies, Int. J. Mod. Phys.D 13 (2004) 1549 [astro-ph/0410182] [INSPIRE]. · Zbl 1062.85004
[8] C. Vogt and T.A. Ensslin, A Bayesian view on Faraday rotation maps — Seeing the magnetic power spectra in galaxy clusters, Astron. Astrophys.434 (2005) 67 [astro-ph/0501211] [INSPIRE].
[9] K. Dolag, M. Kachelriess, S. Ostapchenko and R. Tomas, Lower limit on the strength and filling factor of extragalactic magnetic fields, Astrophys. J.727 (2011) L4 [arXiv:1009.1782] [INSPIRE]. · doi:10.1088/2041-8205/727/1/L4
[10] A. Neronov and I. Vovk, Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars, Science328 (2010) 73 [arXiv:1006.3504] [INSPIRE]. · doi:10.1126/science.1184192
[11] F. Tavecchio et al., The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200, Mon. Not. Roy. Astron. Soc.406 (2010) L70 [arXiv:1004.1329] [INSPIRE].
[12] M.S. Turner and L.M. Widrow, Inflation produced, large scale magnetic fields, Phys. Rev.D 37 (1988) 2743 [INSPIRE].
[13] B. Ratra, Cosmological ‘seed’ magnetic field from inflation, Astrophys. J.391 (1992) L1 [INSPIRE].
[14] A. Dolgov, Breaking of conformal invariance and electromagnetic field generation in the universe, Phys. Rev.D 48 (1993) 2499 [hep-ph/9301280] [INSPIRE].
[15] M. Gasperini, M. Giovannini and G. Veneziano, Primordial magnetic fields from string cosmology, Phys. Rev. Lett.75 (1995) 3796 [hep-th/9504083] [INSPIRE]. · doi:10.1103/PhysRevLett.75.3796
[16] M. Giovannini, Magnetogenesis and the dynamics of internal dimensions, Phys. Rev.D 62 (2000) 123505 [hep-ph/0007163] [INSPIRE].
[17] K. Bamba and J. Yokoyama, Large scale magnetic fields from inflation in dilaton electromagnetism, Phys. Rev.D 69 (2004) 043507 [astro-ph/0310824] [INSPIRE].
[18] K. Bamba and M. Sasaki, Large-scale magnetic fields in the inflationary universe, JCAP02 (2007) 030 [astro-ph/0611701] [INSPIRE].
[19] M. Giovannini and K.E. Kunze, Magnetized CMB observables: a dedicated numerical approach, Phys. Rev.D 77 (2008) 063003 [arXiv:0712.3483] [INSPIRE].
[20] J. Martin and J. Yokoyama, Generation of large-scale magnetic fields in single-field inflation, JCAP01 (2008) 025 [arXiv:0711.4307] [INSPIRE]. · doi:10.1088/1475-7516/2008/01/025
[21] K. Subramanian, Magnetic fields in the early universe, Astron. Nachr.331 (2010) 110 [arXiv:0911.4771] [INSPIRE]. · Zbl 1217.83063 · doi:10.1002/asna.200911312
[22] A. Kandus, K.E. Kunze and C.G. Tsagas, Primordial magnetogenesis, Phys. Rept.505 (2011) 1 [arXiv:1007.3891] [INSPIRE].
[23] R. Durrer, Cosmic magnetic fields and the CMB, New Astron. Rev.51 (2007) 275 [astro-ph/0609216] [INSPIRE].
[24] K. Atmjeet, I. Pahwa, T.R. Seshadri and K. Subramanian, Cosmological magnetogenesis from extra-dimensional Gauss Bonnet gravity, Phys. Rev.D 89 (2014) 063002 [arXiv:1312.5815] [INSPIRE].
[25] T. Fujita, R. Namba, Y. Tada, N. Takeda and H. Tashiro, Consistent generation of magnetic fields in axion inflation models, JCAP05 (2015) 054 [arXiv:1503.05802] [INSPIRE]. · doi:10.1088/1475-7516/2015/05/054
[26] G. Domènech, C. Lin and M. Sasaki, Inflationary magnetogenesis with broken local U(1) symmetry, EPL115 (2016) 19001 [arXiv:1512.01108] [INSPIRE].
[27] C. Stahl, Schwinger effect impacting primordial magnetogenesis, Nucl. Phys.B 939 (2019) 95 [arXiv:1806.06692] [INSPIRE]. · Zbl 1409.83240
[28] V. Demozzi, V. Mukhanov and H. Rubinstein, Magnetic fields from inflation?, JCAP08 (2009) 025 [arXiv:0907.1030] [INSPIRE]. · doi:10.1088/1475-7516/2009/08/025
[29] M.-a. Watanabe, S. Kanno and J. Soda, Inflationary universe with anisotropic hair, Phys. Rev. Lett.102 (2009) 191302 [arXiv:0902.2833] [INSPIRE]. · doi:10.1103/PhysRevLett.102.191302
[30] H. Kitamoto, Schwinger effect in inflaton-driven electric field, Phys. Rev.D 98 (2018) 103512 [arXiv:1807.03753] [INSPIRE].
[31] S. Kanno, J. Soda and M.A. Watanabe, Cosmological magnetic fields from inflation and backreaction, JCAP12 (2009) 009 [arXiv:0908.3509] [INSPIRE]. · doi:10.1088/1475-7516/2009/12/009
[32] S.P. Kim and D.N. Page, Schwinger pair production in dS2and AdS2, Phys. Rev.D 78 (2008) 103517 [arXiv:0803.2555] [INSPIRE].
[33] M.B. Fröb et al., Schwinger effect in de Sitter space, JCAP04 (2014) 009 [arXiv:1401.4137] [INSPIRE]. · doi:10.1088/1475-7516/2014/04/009
[34] C. Stahl, E. Strobel and S.-S. Xue, Fermionic current and Schwinger effect in de Sitter spacetime, Phys. Rev.D 93 (2016) 025004 [arXiv:1507.01686] [INSPIRE].
[35] T. Kobayashi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe, JHEP10 (2014) 166 [arXiv:1408.4141] [INSPIRE]. · Zbl 1333.83272
[36] M. Banyeres, G. Domènech and J. Garriga, Vacuum birefringence and the Schwinger effect in (3 + 1) de Sitter, JCAP10 (2018) 023 [arXiv:1809.08977] [INSPIRE]. · Zbl 07462548
[37] T. Hayashinaka and J. Yokoyama, Point splitting renormalization of Schwinger induced current in de Sitter spacetime, JCAP07 (2016) 012 [arXiv:1603.06172] [INSPIRE]. · doi:10.1088/1475-7516/2016/07/012
[38] J.-J. Geng et al., Schwinger pair production by electric field coupled to inflaton, JCAP02 (2018) 018 [arXiv:1706.02833] [INSPIRE]. · doi:10.1088/1475-7516/2018/02/018
[39] T. Hayashinaka and S.-S. Xue, Physical renormalization condition for de Sitter QED, Phys. Rev.D 97 (2018) 105010 [arXiv:1802.03686] [INSPIRE].
[40] X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev.D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].
[41] X. Chen and Y. Wang, Quasi-single field inflation and non-gaussianities, JCAP04 (2010) 027 [arXiv:0911.3380] [INSPIRE]. · doi:10.1088/1475-7516/2010/04/027
[42] D. Baumann and D. Green, Signatures of supersymmetry from the Early universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
[43] N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
[44] L.H. Ford, Inflation driven by a vector field, Phys. Rev.D 40 (1989) 967 [INSPIRE].
[45] S. Yokoyama and J. Soda, Primordial statistical anisotropy generated at the end of inflation, JCAP08 (2008) 005 [arXiv:0805.4265] [INSPIRE]. · doi:10.1088/1475-7516/2008/08/005
[46] R. Emami, H. Firouzjahi, S.M. Sadegh Movahed and M. Zarei, Anisotropic inflation from charged scalar fields, JCAP02 (2011) 005 [arXiv:1010.5495] [INSPIRE]. · doi:10.1088/1475-7516/2011/02/005
[47] J. Soda, Statistical anisotropy from anisotropic inflation, Class. Quant. Grav.29 (2012) 083001 [arXiv:1201.6434] [INSPIRE]. · Zbl 1241.83006
[48] P. Adshead and A. Liu, Anisotropic massive gauge-flation, JCAP07 (2018) 052 [arXiv:1803.07168] [INSPIRE]. · Zbl 1527.83072 · doi:10.1088/1475-7516/2018/07/052
[49] H.W.H. Tahara, S. Nishi, T. Kobayashi and J. Yokoyama, Self-anisotropizing inflationary universe in Horndeski theory and beyond, JCAP07 (2018) 058 [arXiv:1805.00186] [INSPIRE]. · Zbl 1527.83170 · doi:10.1088/1475-7516/2018/07/058
[50] J.D. Barrow and S. Hervik, Anisotropically inflating universes, Phys. Rev.D 73 (2006) 023007 [gr-qc/0511127] [INSPIRE].
[51] J.D. Barrow and S. Hervik, On the evolution of universes in quadratic theories of gravity, Phys. Rev.D 74 (2006) 124017 [gr-qc/0610013] [INSPIRE].
[52] J.D. Barrow and S. Hervik, Simple types of anisotropic inflation, Phys. Rev.D 81 (2010) 023513 [arXiv:0911.3805] [INSPIRE].
[53] A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge fields and inflation, Phys. Rept.528 (2013) 161 [arXiv:1212.2921] [INSPIRE]. · Zbl 1297.83055 · doi:10.1016/j.physrep.2013.03.003
[54] R. Emami, Anisotropic inflation and cosmological observations, arXiv:1511.01683 [INSPIRE].
[55] P. Adshead and E.I. Sfakianakis, Fermion production during and after axion inflation, JCAP11 (2015) 021 [arXiv:1508.00891] [INSPIRE]. · doi:10.1088/1475-7516/2015/11/021
[56] P. Adshead et al., Phenomenology of fermion production during axion inflation, JCAP06 (2018) 020 [arXiv:1803.04501] [INSPIRE]. · doi:10.1088/1475-7516/2018/06/020
[57] X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino signatures in primordial non-gaussianities, JHEP09 (2018) 022 [arXiv:1805.02656] [INSPIRE]. · doi:10.1007/JHEP09(2018)022
[58] X. Chen, Primordial non-gaussianities from inflation models, Adv. Astron.2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE]. · doi:10.1155/2010/638979
[59] Y. Wang, Inflation, cosmic perturbations and non-gaussianities, Commun. Theor. Phys.62 (2014) 109 [arXiv:1303.1523] [INSPIRE]. · Zbl 1294.83001 · doi:10.1088/0253-6102/62/1/19
[60] S. Kumar and R. Sundrum, Heavy-lifting of gauge theories by cosmic inflation, JHEP05 (2018) 011 [arXiv:1711.03988] [INSPIRE]. · Zbl 1391.85005 · doi:10.1007/JHEP05(2018)011
[61] X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP12 (2017) 006 [arXiv:1703.10166] [INSPIRE]. · Zbl 1515.83321 · doi:10.1088/1475-7516/2017/12/006
[62] S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity. Volume 1, Wiley, New York U.S.A. (1972).
[63] S.M. Carroll, Spacetime and geometry: an introduction to general relativity, Addison-Wesley, San Francisco U.S.A. (2004). · Zbl 1131.83001
[64] R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive interactions: heavy particles and non-Gaussianity, JCAP10 (2017) 058 [arXiv:1606.00513] [INSPIRE]. · Zbl 1515.83348 · doi:10.1088/1475-7516/2017/10/058
[65] X. Tong, Y. Wang and S. Zhou, Unsuppressed primordial standard clocks in warm quasi-single field inflation, JCAP06 (2018) 013 [arXiv:1801.05688] [INSPIRE]. · Zbl 1527.83174 · doi:10.1088/1475-7516/2018/06/013
[66] X. Chen et al., Quantum standard clocks in the primordial trispectrum, JCAP05 (2018) 049 [arXiv:1803.04412] [INSPIRE]. · doi:10.1088/1475-7516/2018/05/049
[67] T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP06 (2013) 051 [arXiv:1211.1624] [INSPIRE]. · Zbl 1342.83110 · doi:10.1007/JHEP06(2013)051
[68] H. Lee, D. Baumann and G.L. Pimentel, Non-gaussianity as a particle detector, JHEP12 (2016) 040 [arXiv:1607.03735] [INSPIRE]. · Zbl 1390.83465 · doi:10.1007/JHEP12(2016)040
[69] X. Chen, Y. Wang and Z.-Z. Xianyu, Loop corrections to standard model fields in inflation, JHEP08 (2016) 051 [arXiv:1604.07841] [INSPIRE]. · Zbl 1390.83439 · doi:10.1007/JHEP08(2016)051
[70] X. Chen, Y. Wang and Z.-Z. Xianyu, Standard model background of the cosmological collider, Phys. Rev. Lett.118 (2017) 261302 [arXiv:1610.06597] [INSPIRE]. · doi:10.1103/PhysRevLett.118.261302
[71] X. Chen, Y. Wang and Z.-Z. Xianyu, Standard model mass spectrum in inflationary universe, JHEP04 (2017) 058 [arXiv:1612.08122] [INSPIRE]. · Zbl 1378.85005 · doi:10.1007/JHEP04(2017)058
[72] Y.-P. Wu and J. Yokoyama, Loop corrections to primordial fluctuations from inflationary phase transitions, JCAP05 (2018) 009 [arXiv:1704.05026] [INSPIRE]. · doi:10.1088/1475-7516/2018/05/009
[73] S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev.D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].
[74] L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP12 (2010) 008 [arXiv:0912.2734] [INSPIRE]. · Zbl 1294.83099 · doi:10.1007/JHEP12(2010)008
[75] L. Senatore and M. Zaldarriaga, On loops in inflation II: IR effects in single clock inflation, JHEP01 (2013) 109 [arXiv:1203.6354] [INSPIRE]. · doi:10.1007/JHEP01(2013)109
[76] G.L. Pimentel, L. Senatore and M. Zaldarriaga, On loops in inflation III: time independence of zeta in single clock inflation, JHEP07 (2012) 166 [arXiv:1203.6651] [INSPIRE]. · doi:10.1007/JHEP07(2012)166
[77] E. Dimastrogiovanni, M. Fasiello and G. Tasinato, Probing the inflationary particle content: extra spin-2 field, JCAP08 (2018) 016 [arXiv:1806.00850] [INSPIRE]. · Zbl 07461345 · doi:10.1088/1475-7516/2018/08/016
[78] E. Bavarsad, S.P. Kim, C. Stahl and S.-S. Xue, Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime, Phys. Rev.D 97 (2018) 025017 [arXiv:1707.03975] [INSPIRE].
[79] T. Hayashinaka, T. Fujita and J. Yokoyama, Fermionic Schwinger effect and induced current in de Sitter space, JCAP07 (2016) 010 [arXiv:1603.04165] [INSPIRE]. · doi:10.1088/1475-7516/2016/07/010
[80] K.D. Lozanov, A. Maleknejad and E. Komatsu, Schwinger effect by an SU(2) gauge field during inflation, JHEP02 (2019) 041 [arXiv:1805.09318] [INSPIRE]. · Zbl 1411.83159
[81] A. Maleknejad and E. Komatsu, Production and backreaction of spin-2 particles of SU(2) gauge field during inflation, arXiv:1808.09076 [INSPIRE]. · Zbl 1416.83156
[82] E. Dimastrogiovanni, M. Fasiello and T. Fujita, Primordial gravitational waves from axion-gauge fields dynamics, JCAP01 (2017) 019 [arXiv:1608.04216] [INSPIRE]. · doi:10.1088/1475-7516/2017/01/019
[83] C. Stahl and S.-S. Xue, Schwinger effect and backreaction in de Sitter spacetime, Phys. Lett.B 760 (2016) 288 [arXiv:1603.07166] [INSPIRE].
[84] E. Bavarsad, C. Stahl and S.-S. Xue, Scalar current of created pairs by Schwinger mechanism in de Sitter spacetime, Phys. Rev.D 94 (2016) 104011 [arXiv:1602.06556] [INSPIRE].
[85] O.O. Sobol, E.V. Gorbar, M. Kamarpour and S.I. Vilchinskii, Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis, Phys. Rev.D 98 (2018) 063534 [arXiv:1807.09851] [INSPIRE].
[86] H. Firouzjahi et al., Charged vector inflation, arXiv:1812.07464 [INSPIRE].
[87] K. Dimopoulos, M. Karciauskas, D.H. Lyth and Y. Rodriguez, Statistical anisotropy of the curvature perturbation from vector field perturbations, JCAP05 (2009) 013 [arXiv:0809.1055] [INSPIRE]. · doi:10.1088/1475-7516/2009/05/013
[88] K. Dimopoulos, M. Karciauskas and J.M. Wagstaff, Vector curvaton without instabilities, Phys. Lett.B 683 (2010) 298 [arXiv:0909.0475] [INSPIRE].
[89] J.C. Bueno Sanchez and K. Dimopoulos, Inflationary buildup of a vector field condensate and its cosmological consequences, JCAP01 (2014) 012 [arXiv:1308.3739] [INSPIRE]. · doi:10.1088/1475-7516/2014/01/012
[90] A.J. Tolley and M. Wyman, The gelaton scenario: equilateral non-gaussianity from multi-field dynamics, Phys. Rev.D 81 (2010) 043502 [arXiv:0910.1853] [INSPIRE].
[91] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Mass hierarchies and non-decoupling in multi-scalar field dynamics, Phys. Rev.D 84 (2011) 043502 [arXiv:1005.3848] [INSPIRE].
[92] A. Achucarro et al., Effective theories of single field inflation when heavy fields matter, JHEP05 (2012) 066 [arXiv:1201.6342] [INSPIRE]. · doi:10.1007/JHEP05(2012)066
[93] X. Chen and Y. Wang, Quasi-single field inflation with large mass, JCAP09 (2012) 021 [arXiv:1205.0160] [INSPIRE]. · doi:10.1088/1475-7516/2012/09/021
[94] S. Pi and M. Sasaki, Curvature perturbation spectrum in two-field inflation with a turning trajectory, JCAP10 (2012) 051 [arXiv:1205.0161] [INSPIRE]. · doi:10.1088/1475-7516/2012/10/051
[95] R. Gwyn, G.A. Palma, M. Sakellariadou and S. Sypsas, Effective field theory of weakly coupled inflationary models, JCAP04 (2013) 004 [arXiv:1210.3020] [INSPIRE]. · doi:10.1088/1475-7516/2013/04/004
[96] H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Quasi single field inflation in the non-perturbative regime, JHEP06 (2018) 105 [arXiv:1706.09971] [INSPIRE]. · doi:10.1007/JHEP06(2018)105
[97] X. Tong, Y. Wang and S. Zhou, On the effective field theory for quasi-single field inflation, JCAP11 (2017) 045 [arXiv:1708.01709] [INSPIRE]. · doi:10.1088/1475-7516/2017/11/045
[98] A.V. Iyer et al., Strongly coupled quasi-single field inflation, JCAP01 (2018) 041 [arXiv:1710.03054] [INSPIRE]. · doi:10.1088/1475-7516/2018/01/041
[99] J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP11 (2013) 043 [arXiv:1306.3691] [INSPIRE]. · doi:10.1088/1475-7516/2013/11/043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.