×

Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern. (English) Zbl 1383.76233

Summary: A turbulent boundary layer developed over a herringbone patterned riblet surface is investigated using stereoscopic particle image velocimetry in the cross-stream plane at \(Re_{\tau}\approx 3900\). The three velocity components resulting from this experiment reveal a pronounced spanwise periodicity in all single-point velocity statistics. Consistent with previous hot-wire studies over similar-type riblets, we observe a weak time-average secondary flow in the form of \(\delta\)-filling streamwise vortices. The observed differences in the surface and secondary flow characteristics, compared to other heterogeneous-roughness studies, may suggest that different mechanisms are responsible for the flow modifications in this case. Observations of instantaneous velocity fields reveal modified and rearranged turbulence structures. The instantaneous snapshots also suggest that the time-average secondary flow may be an artefact arising from superpositions of much stronger instantaneous turbulent events enhanced by the surface texture. In addition, the observed instantaneous secondary motions seem to have promoted a free-stream-engulfing behaviour in the outer layer, which would indicate an increase turbulent/non-turbulent flow mixing. It is overall demonstrated that the presence of large-scale directionality in transitional surface roughness can cause a modification throughout the entire boundary layer, even when the roughness height is 0.5 % of the layer thickness.

MSC:

76F40 Turbulent boundary layers
76D55 Flow control and optimization for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acharya, M.; Bornstein, J.; Escudier, M. P., Turbulent boundary layers on rough surfaces, Exp. Fluids, 4, 1, 33-47, (1986) · doi:10.1007/BF00316784
[2] Adrian, R. J.; Christensen, K. T.; Liu, Z. C., Analysis and interpretation of instantaneous turbulent velocity fields, Exp. Fluids, 29, 3, 275-290, (2000) · doi:10.1007/s003489900087
[3] Adrian, R. J.; Meinhart, C. D.; Tomkins, C. D., Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 422, 1-54, (2000) · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[4] Del Álamo, J. C.; Jiménez, J.; Zandonade, P.; Moser, R. D., Self-similar vortex clusters in the turbulent logarithmic region, J. Fluid Mech., 561, 329-358, (2006) · Zbl 1157.76346 · doi:10.1017/S0022112006000814
[5] Anders, J. B., Outer-layer manipulators for turbulent drag reduction, Visc. Drag Reduc. Boundary Layers, 123, 263-284, (1990)
[6] Anderson, W.; Barros, J. M.; Christensen, K. T.; Awasthi, A., Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness, J. Fluid Mech., 768, 316-347, (2015) · doi:10.1017/jfm.2015.91
[7] Barros, J. M.; Christensen, K. T., Observations of turbulent secondary flows in a rough-wall boundary layer, J. Fluid Mech., 748, R1, (2014) · doi:10.1017/jfm.2014.218
[8] Bechert, D. W.; Bartenwerfer, M., The viscous flow on surfaces with longitudinal ribs, J. Fluid Mech., 206, 105-129, (1989) · doi:10.1017/S0022112089002247
[9] Bechert, D. W.; Bruse, M.; Hage, W., Experiments with three-dimensional riblets as an idealized model of shark skin, Exp. Fluids, 28, 5, 403-412, (2000) · doi:10.1007/s003480050400
[10] Bechert, D. W.; Bruse, M.; Hage, W.; Der Hoeven, J. G. T. Van; Hoppe, G., Experiments on drag-reducing surfaces and their optimization with an adjustable geometry, J. Fluid Mech., 338, 59-87, (1997) · doi:10.1017/S0022112096004673
[11] Chan, L.; Macdonald, M.; Chung, D.; Hutchins, N.; Ooi, A., A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime, J. Fluid Mech., 771, 743-777, (2015) · doi:10.1017/jfm.2015.172
[12] Chauhan, K.; Philip, J.; De Silva, C. M.; Hutchins, N.; Marusic, I., The turbulent/non-turbulent interface and entrainment in a boundary layer, J. Fluid Mech., 742, 119-151, (2014) · doi:10.1017/jfm.2013.641
[13] Chen, H.; Rao, F.; Shang, X.; Zhang, D.; Hagiwara, I., Flow over bio-inspired 3d herringbone wall riblets, Exp. Fluids, 55, 3, 1-7, (2014)
[14] Choi, K. S., Near wall structure of turbulent boundary layer with riblets, J. Fluid Mech., 208, 417-458, (1989) · doi:10.1017/S0022112089002892
[15] Coceal, O.; Thomas, T. G.; Castro, I. P.; Belcher, S. E., Mean flow and turbulence statistics over groups of urban-like cubical obstacles, Boundary-Layer Meteorol., 121, 3, 491-519, (2006) · doi:10.1007/s10546-006-9076-2
[16] Eitel-Amor, G.; Örlü, R.; Schlatter, P., Simulation and validation of a spatially evolving turbulent boundary layer up to Re_𝜃 = 8300, Intl J. Heat Fluid Flow, 47, 57-69, (2014) · doi:10.1016/j.ijheatfluidflow.2014.02.006
[17] Finnigan, J. J., Turbulence in plant canopies, Annu. Rev. Fluid Mech., 32, 1, 519-571, (2000) · Zbl 0992.76040 · doi:10.1146/annurev.fluid.32.1.519
[18] Flack, K. A.; Schultz, M. P., Review of hydraulic roughness scales in the fully rough regime, J. Fluids Engng, 132, 4, (2010) · doi:10.1115/1.4001492
[19] Flack, K. A.; Schultz, M. P.; Shapiro, T. A., Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls, Phys. Fluids, 17, 3, (2005) · Zbl 1187.76157 · doi:10.1063/1.1843135
[20] García-Mayoral, R.; Jiménez, J., Hydrodynamic stability and breakdown of the viscous regime over riblets, J. Fluid Mech., 678, 317-347, (2011) · Zbl 1241.76175 · doi:10.1017/jfm.2011.114
[21] Granville, P. S.1958 The frictional resistance and turbulent boundary layer of rough surfaces. Tech. Rep. 1024.
[22] Hinze, J., Secondary currents in wall turbulence, Phys. Fluids (Suppl.), 10, S122-S125, (1967) · doi:10.1063/1.1762429
[23] Hinze, J. O., Experimental investigation on secondary currents in the turbulent flow through a straight conduit, Appl. Sci. Res., 28, 1, 453-465, (1973)
[24] Hutchins, N.; Hambleton, W. T.; Marusic, I., Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers, J. Fluid Mech., 541, 21-54, (2005) · Zbl 1119.76304 · doi:10.1017/S0022112005005872
[25] Hutchins, N.; Marusic, I., Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 579, 1-28, (2007) · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[26] Jiménez, J., Turbulent flows over rough walls, Annu. Rev. Fluid Mech., 36, 173-196, (2004) · Zbl 1125.76348 · doi:10.1146/annurev.fluid.36.050802.122103
[27] Kamrin, K.; Bazant, M. Z.; Stone, H. A., Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor, J. Fluid Mech., 658, 409-437, (2010) · Zbl 1205.76080 · doi:10.1017/S0022112010001801
[28] Kim, K. C.; Adrian, R. J., Very large-scale motion in the outer layer, Phys. Fluids, 11, 2, 417-422, (1999) · Zbl 1147.76430 · doi:10.1063/1.869889
[29] Koeltzsch, K.; Dinkelacker, A.; Grundmann, R., Flow over convergent and divergent wall riblets, Exp. Fluids, 33, 2, 346-350, (2002) · doi:10.1007/s00348-002-0446-3
[30] Lee, J. H.; ; Monty, J. P.; Hutchins, N., Validating under-resolved turbulence intensities for PIV experiments in canonical wall-bounded turbulence, Exp. Fluids, (2016)
[31] Luchini, P.; Manzo, F.; Pozzi, A., Resistance of a grooved surface to parallel flow and cross-flow, J. Fluid Mech., 228, 87-109, (1991) · Zbl 0723.76032
[32] Mejia-Alvarez, R.; Christensen, K. T., Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness, Phys. Fluids, 25, 1, (2013)
[33] Monty, J. P.; Stewart, J. A.; Williams, R. C.; Chong, M. S., Large-scale features in turbulent pipe and channel flows, J. Fluid Mech., 589, 147-156, (2007) · Zbl 1141.76316 · doi:10.1017/S002211200700777X
[34] Moody, L. F., Friction factors for pipe flow, Trans. ASME, 66, 8, 671-684, (1944)
[35] Napoli, E.; Armenio, V.; Marchis, M. D., The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows, J. Fluid Mech., 613, 385-394, (2008) · Zbl 1151.76500 · doi:10.1017/S0022112008003571
[36] Nugroho, B., Gnanamanickam, E. P., , Monty, J. P. & Hutchins, N.2014 Roll-modes generated in turbulent boundary layers with passive surface modifications. AIAA paper.
[37] Nugroho, B.; Hutchins, N.; Monty, J. P., Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness, Intl J. Heat Fluid Flow, 41, 90-102, (2013) · doi:10.1016/j.ijheatfluidflow.2013.04.003
[38] Perry, A. E.; Li, J. D., Experimental support for the attached-eddy hypothesis in zero-pressure gradient turbulent boundary layers, J. Fluid Mech., 218, 405-438, (1990) · doi:10.1017/S0022112090001057
[39] Perry, A. E.; Schofield, W. H.; Joubert, P. N., Rough wall turbulent boundary layers, J. Fluid Mech., 37, 2, 383-413, (1969) · doi:10.1017/S0022112069000619
[40] Prandtl, L. & Schlichting, H.1955 The resistance law for rough plates, translated by P. S. Granville. Tech. Rep. 258.
[41] Raupach, M. R.; Shaw, R. H., Averaging procedures for flow within vegetation canopies, Boundary-Layer Meteorol., 22, 1, 79-90, (1982) · doi:10.1007/BF00128057
[42] Schubauer, G. B.; Spangenberg, W. G., Forced mixing in boundary layers, J. Fluid Mech., 8, 10-32, (1960) · Zbl 0092.20001 · doi:10.1017/S0022112060000372
[43] Shockling, M. A.; Allen, J. J.; Smits, A. J., Roughness effects in turbulent pipe flow, J. Fluid Mech., 564, 267-285, (2006) · Zbl 1178.76049 · doi:10.1017/S0022112006001467
[44] De Silva, C. M.; Gnanamanickam, E. P.; Atkinson, C.; Buchmann, N. A.; Hutchins, N.; Soria, J.; Marusic, I., High spatial range velocity measurements in high Reynolds number turbulent boundary layer, Phys. Fluids, 26, 2, (2014) · doi:10.1063/1.4866458
[45] Soloff, S. M.; Adrian, R. J.; Liu, Z. C., Distortion compensation for generalized stereoscopic particle image velocimetry, Meas. Sci. Technol., 8, 12, 1441-1454, (1997) · doi:10.1088/0957-0233/8/12/008
[46] Tomkins, C. D.; Adrian, R. J., Spanwise structure and scale growth in turbulent boundary layers, J. Fluid Mech., 490, 37-74, (2003) · Zbl 1063.76514 · doi:10.1017/S0022112003005251
[47] Vanderwel, C.; Ganapathisubramani, B., Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers, J. Fluid Mech., 774, R2, (2015) · Zbl 1416.76066 · doi:10.1017/jfm.2015.292
[48] Vermaas, D. A.; Uijttewaal, W. S. J.; Hoitink, A. J. F., Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel, Water Resour. Res., 47, 2, (2011) · doi:10.1029/2010WR010138
[49] Volino, R. J.; Schultz, M. P.; Flack, K. A., Turbulence structure in a boundary layer with two-dimensional roughness, J. Fluid Mech., 635, 75-101, (2009) · Zbl 1183.76055 · doi:10.1017/S0022112009007617
[50] Walsh, M. J., Effect of detailed surface geometry on riblet drag reduction performance, J. Aircraft., 27, 6, 572-573, (1990) · doi:10.2514/3.25323
[51] Wang, Z. Q.; Cheng, N. S., Time-mean structure of secondary flows in open channel with longitudinal bedforms, Adv. Water Resour., 29, 11, 521-542, (2006)
[52] Willingham, D.; Anderson, W.; Christensen, K. T.; Barros, J. M., Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization, Phys. Fluids, 26, 2, (2014) · doi:10.1063/1.4864105
[53] Wu, Y.; Christensen, K. T., Spatial structure of a turbulent boundary layer with irregular surface roughness, J. Fluid Mech., 655, 380-418, (2010) · Zbl 1197.76013 · doi:10.1017/S0022112010000960
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.