×

zbMATH — the first resource for mathematics

An operatorial description of desertification. (English) Zbl 1354.37089

MSC:
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
37M05 Simulation of dynamical systems
47L90 Applications of operator algebras to the sciences
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. F. Reynolds et al., Global desertification: Building a science for dryland development, Science, 316 (2007), pp. 847–851.
[2] J. Müller, Floristic and structural pattern and current distribution of Tiger Bush vegetation in Burkina Faso (West Africa), assessed by means of belt transects and spatial analysis, Appl. Ecol. Environ. Res., 11 (2013), pp. 153–171.
[3] E. Buis, A. Veldkamp, B. Boeken, and N. Van Breemen, Controls on plant functional surface cover types along a precipitation gradient in the Negev Desert of Israel, J. Arid Environ., 73 (2009), pp. 82–90.
[4] M. Moreno-de las Heras, P. M. Saco, G. R. Willgoose, and D. J. Tongway, Variations in hydrological connectivity of Australian semiarid landscapes indicate abrupt changes in rainfall use efficiency of vegetation, J. Geophys. Res., 117 (2012), G03009.
[5] M. Rietkerk, S.C. Dekker, P. C. de Ruiter, and J. van de Koppel, Self-organized patchiness and catastrophic shifts in ecosystems, Science, 305 (2004), pp. 1926–1929.
[6] R. Lefever and O. Lejeune, On the origin of tiger bush, Bull. Math. Biol., 59 (1997), pp. 263–294. · Zbl 0903.92031
[7] C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), pp. 1826–1828.
[8] J. von Hardenberg, E. Meron, M. Shachak, and Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101.
[9] M. Rietkerk, M. C. Boerlijst, F. van Langevelde, R. Hille Ris Lambers, J. van de Koppel, H. H. T. Prins, and A. de Roos, Self-organisation of vegetation in arid ecosystems, Amer. Natural, 160 (2002), pp. 524–530.
[10] J. A. Sherratt, An analysis of vegetation stripe formation in semi-arid landscapes, J. Math. Biol., 51 (2005), 183-197. · Zbl 1068.92047
[11] R. Martínez-García, J. M. Calabrese, E. H. García, and C. López, Minimal mechanisms for vegetation patterns in semiarid regions, R. Soc. Lond. Trans. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20140068.
[12] V. Dakos et al., Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data, PLoS ONE, 7 (2012), e41010.
[13] H. Weissmann and N. M. Shnerb, Stochastic desertification, Europhys. Lett., 106 (2014), 28004.
[14] M. Scheffer, Critical Transitions in Nature and Society, Princeton Stud. Complex., Princeton University Press, Princeton, NJ, 2009.
[15] M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held , E. H. van Nes, M. Rietkerk, and G. Sugihara, Early-warning signals for critical transitions, Nature, 461 (2009), pp. 53–59.
[16] M. Scheffer et al., Anticipating critical transitions, Science, 338 (2012), pp. 344–348.
[17] S. Kéfi, M. Rietkerk, C. L. Alados, Y. Pueyo, V. P. Papanastasis, A. ElAich, and P. C. de Ruiter, Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems, Nature, 449 (2007), pp. 213–217.
[18] V. Dakos, S. Kéfi, M. Rietkerk, E. H. van Nes, and M. Scheffer, Slowing down in spatially patterned ecosystems at the brink of collapse, Amer. Natural, 177 (2011), E153–E166.
[19] R. Corrado, A. M. Cherubini, and C. Pennetta, Early warning signals of desertification transitions in semi-arid ecosystems, Phys. Rev. E (3), 90 (2014), 062705.
[20] S. Kéfi, V. Guttal, W. A. Brock, S. R. Carpenter, A. M. Ellison, V. N. Livina, D. A. Seekell, M. Scheffer, E. H. van Nes, and V. Dakos, Early warning signals of ecological transitions: Methods for spatial patterns, PLoS One, 9 (2014), E92097.
[21] S. Kéfi, M. Rietkerk, M. van Baalen, and M. Loreau, Local facilitation, bistability and transitions in arid ecosystems, Theor. Popul. Biol., 71 (2007), pp. 367–379. · Zbl 1124.92048
[22] R. Corrado, A. M. Cherubini, and C. Pennetta, Signals of critical transitions in ecosystems associated with fluctuations of spatial patterns, in Proceedings of the 2013 22nd International Conference on Noise and Fluctuations (ICNF), IEEE, Piscataway, NJ, 2013.
[23] R. Corrado, A. M. Cherubini, and C. Pennetta, Critical desertification transition in semi-arid ecosystems: the role of local facilitation and colonization rate, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), pp. 3–12.
[24] R. Corrado, A. M. Cherubini, and C. Pennetta, Desertification transitions in semi-arid ecosystems and directed percolations, in ISCS 2014: Interdisciplinary Symposium on Complex Systems, A. Sanayei, O. E. Rössler, and I. Zelinka, eds., Emergence, Complexity Comput., 14, Springer, Cham, Switzerland, 2015, pp. 99–107.
[25] G. Bel, A. Hagberg, and E. Meron, Gradual regime shifts in spatially extended ecosystems, Theor. Ecol., 5 (2012), pp. 591–604.
[26] F. Bagarello and F. Oliveri, An operator-like description of love affairs, SIAM J. Appl. Math., 70 (2010), pp. 3235–3251. · Zbl 1217.37078
[27] F. Bagarello and F. Oliveri, A phenomenological operator description of interactions between populations with applications to migration, Math. Models Methods Appl. Sci., 23 (2013), pp. 471–492. · Zbl 1338.37130
[28] F. Bagarello, F. Gargano, and F. Oliveri, A phenomenological operator description of dynamics of crowds: Escape strategies, Appl. Math. Model., 39 (2015), pp. 2276–2294.
[29] F. Bagarello, Quantum Dynamics for Classical Systems: With Applications of the Number Operator, Wiley, Hoboken, NJ, 2012.
[30] F. Bagarello and F. Oliveri, Dynamics of closed ecosystems described by operators, Ecol. Model., 275 (2014), pp. 89–99.
[31] F. Bagarello, A quantum-like view to a generalized two players game, Internat. J. Theoret. Phys., 54 (2015), pp. 3612–3627. · Zbl 1325.91016
[32] F. Bagarello, An operator view on alliances in politics, SIAM J. Appl. Math., 75 (2015), pp. 564–584. · Zbl 1353.37178
[33] O. N. Temkin, A. V. Zeigarnik, and D. G. Bonchev, Chemical Reaction Networks: A Graph-Theoretical Approach, CRC Press, Boca Raton, FL, 1996.
[34] Y. Ben-Aryeh, A. Mann, and I. Yaakov, Rabi oscillations in a two-level atomic system with a pseudo-hermitian Hamiltonian, J. Phys. A, 37 (2004), pp. 12059–12066. · Zbl 1076.81049
[35] O. Cherbal, M. Drir, M. Maamache, and D. A. Trifonov, Fermionic coherent states for pseudo-Hermitian two-level systems, J. Phys. A, 40 (2007), pp. 1835–1844. · Zbl 1113.81073
[36] P. Roman, Advanced Quantum Theory, Addison–Wesley, New York, 1965. · Zbl 0127.18603
[37] E. Merzbacher, Quantum Mechanics, Wiley, New York, 1970.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.