×

zbMATH — the first resource for mathematics

Decentralised \(H_\infty \) control for singular systems. (English) Zbl 1167.93341
Summary: Considering the design problem of decentralised \(H_{\infty }\) controller of singular systems, the two cases of controllers via measurement feedback are designed: one is precise controller, and the other is additive controller gain variation. The design procedures of the two cases of controllers are presented in terms of the solutions to generalised algebraic Riccati inequalities. The designed controllers in each case guarantee that closed-loop singular systems are admissible and with \(H_{\infty }\)-norm bound on disturbance attenuation. Finally, a numerical example to demonstrate the validity of the proposed approach is given.
MSC:
93B51 Design techniques (robust design, computer-aided design, etc.)
93B36 \(H^\infty\)-control
93A14 Decentralized systems
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1049/ip-cta:19990540 · doi:10.1049/ip-cta:19990540
[2] Chang NT, 25th IEEE Conference on Decision and Control pp 1176– (1986) · doi:10.1109/CDC.1986.267567
[3] Chang NT, IEEE Transactions on Automatic Control 46 pp 1589– (2001) · Zbl 1008.93006 · doi:10.1109/9.956054
[4] Chen YH, Journal of Dynamic Systems, Measurement and Control 114 pp 1– (1992) · Zbl 0767.93002 · doi:10.1115/1.2896502
[5] Dai L, in Proceedings of IEEE Conference on Systems, Man, and Cybernetics pp 722– (1988) · doi:10.1109/ICSMC.1988.754401
[6] Dai L, Lecture Notes in Control and Information Sciences 118 (1989)
[7] Dorato P, in Proceedings of the American Control Conference pp 2829– (1998)
[8] DOI: 10.1109/9.29425 · Zbl 0698.93031 · doi:10.1109/9.29425
[9] DOI: 10.1007/BFb0007371 · doi:10.1007/BFb0007371
[10] Gerard S, International Journal of Control 74 pp 211– (2001) · Zbl 1033.93020 · doi:10.1080/00207170010001966
[11] DOI: 10.1016/0005-1098(94)90096-5 · Zbl 0816.93036 · doi:10.1016/0005-1098(94)90096-5
[12] Haddad WM, in Proceedings of the American Control Conference pp 2837– (1998)
[13] Izumi M, Automatica 33 pp 669– (1997) · Zbl 0881.93024 · doi:10.1016/S0005-1098(96)00193-8
[14] Kazunori Y, in Proceedings of the 35th Conference on Decision and Control pp 4264– (1996)
[15] DOI: 10.1109/9.618239 · Zbl 0900.93075 · doi:10.1109/9.618239
[16] Knobloch HW, Topics in Control Theory (1993)
[17] DOI: 10.1007/BF01600184 · Zbl 0613.93029 · doi:10.1007/BF01600184
[18] Ranjit AD, Automatica 29 pp 457– (1993) · Zbl 0772.93029 · doi:10.1016/0005-1098(93)90138-J
[19] Sen MDL, International Journal of Systems Science 22 pp 885– (1991) · Zbl 0725.93050 · doi:10.1080/00207729108910666
[20] DOI: 10.1109/9.119629 · Zbl 0745.93025 · doi:10.1109/9.119629
[21] DOI: 10.1016/0005-1098(94)E0045-J · Zbl 0825.93249 · doi:10.1016/0005-1098(94)E0045-J
[22] Wang DH, IEEE Transactions on Automatic Control 44 pp 148– (1999) · Zbl 1056.93501 · doi:10.1109/9.739107
[23] Wang DH, IEEE Transactions on Automatic Control 45 pp 795– (2000) · Zbl 0987.93002 · doi:10.1109/9.847125
[24] DOI: 10.1049/ip-cta:19982048 · doi:10.1049/ip-cta:19982048
[25] Yang GH, International Journal of Control 72 pp 815– (1999) · Zbl 0945.93014 · doi:10.1080/002071799220731
[26] Yang GH, in Proceedings of American Control Conference pp 2395– (1997)
[27] Yang GH, International Journal of Control 73 pp 1500– (2000) · Zbl 1009.93020 · doi:10.1080/00207170050163369
[28] Zhang QL, Proceedings 28th IEEE Conference on Decision and Control pp 866– (1989) · doi:10.1109/CDC.1989.70244
[29] Zhang QL, Structural Analysis and Decentralised Control for Large-scale Descriptor Systems (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.