zbMATH — the first resource for mathematics

A combined Weisfeiler-Lehman graph kernel for structured data. (English) Zbl 1398.05145
05C62 Graph representations (geometric and intersection representations, etc.)
30C40 Kernel functions in one complex variable and applications
68T10 Pattern recognition, speech recognition
68R10 Graph theory (including graph drawing) in computer science
68P05 Data structures
Full Text: DOI
[1] Bai, L.; Hancock, E. R., Graph kernels from the Jensen-Shannon divergence, J. Math. Imag. Vis., 47, 1-2, 60-69, (2013) · Zbl 1276.68152
[2] Bai, L.; Hancock, E. R., Fast depth-based subgraph kernels for unattributed graphs, Pattern Recogn., 50, 233-245, (2016) · Zbl 1394.68272
[3] Bai, L.; Rossi, L.; Torsello, A.; Hancock, E. R., A quantum Jensen-Shannon graph kernel for unattributed graphs, Pattern Recogn., 48, 2, 344-355, (2015) · Zbl 1373.68345
[4] Bai, L.; Rossi, L.; Zhang, Z.; Hancock, E. R., An aligned subtree kernel for weighted graphs, Int. Conf. Mach. Learn., 30-39, (2015), Lille, France
[5] Bai, L.; Zhang, Z.; Wang, C.; Bai, X.; Hancock, E. R., A graph kernel based on the Jensen-Shannon representation alignment, Int. Joint Conf. on Artificial Intelligence, 3322-3328, (2015), Springer
[6] Borgwardt, K. M.; Kriegel, H.-P., Shortest-path kernels on graphs, 5th Int. Conf. on Data Mining, 8-16, (2005)
[7] Borgwardt, K. M.; Ong, C. S.; Schönauer, S.; Vishwanathan, S. V. N.; Smola, A. J.; Kriegel, H.-P., Protein function prediction via graph kernels, Bioinformatics, 47-56, (2005)
[8] Borgwardt, K. M.; Schraudolph, N. N.; Vishwanathan, S. V. N., Fast computation of graph kernels, Adv. Neural Inform. Process. Syst., 1449-1456, (2006)
[9] Chang, C.-C.; Lin, C.-J., Libsvm: A library for support vector machines, ACM Trans. Intell. Syst. Technol., 2, 3, 27, (2011)
[10] Duan, L.; Tsang, I. W.; Xu, D., Domain transfer multiple kernel learning, IEEE Trans. Pattern Anal. Mach. Intell., 34, 3, 465-479, (2012)
[11] Fisher, M.; Savva, M.; Hanrahan, P., Characterizing structural relationships in scenes using graph kernels, ACM Trans. Graphics, 30, 34, (2011)
[12] Foggia, P.; Percannella, G.; Vento, M., Graph matching and learning in pattern recognition in the last 10 years, Int. J. Pattern Recogn. Artifi. Intell., 28, 1, (2014)
[13] Gärtner, T.; Flach, P.; Wrobel, S., Learning Theory and Kernel Machines, On graph kernels: hardness results and efficient alternatives, 129-143, (2003), Springer · Zbl 1274.68312
[14] Gönen, M.; Alpaydın, E., Multiple kernel learning algorithms, J. Mach. Learn. Res., 12, 2211-2268, (2011) · Zbl 1280.68167
[15] Kamali, S. S.; Zare, M. P.; Hamid, B., Detection of evolving concepts in non-stationary data streams: A multiple kernel learning approach, Expert Syst. Appl., 91, 187-197, (2018)
[16] Kashima, H.; Tsuda, K.; Inokuchi, A., Marginalized kernels between labeled graphs, Proc. 20th Int. Conf. Machine Learning, 3, 321-328, (2003), Washington DC
[17] Kashima, H.; Tsuda, K.; Inokuchi, A., Kernels for graphs, Kernel Methods Comput. Biol., 39, 1, 101-113, (2004)
[18] Kondor, R. I.; Lafferty, J., Diffusion kernels on graphs and other discrete input spaces, Proc. 19th Int. Conf. on Machine Learning, 2, 315-322, (2002)
[19] Luo, B.; Hancock, E. R., Structural graph matching using the EM algorithm and singular value decomposition, IEEE Trans. Pattern Anal. Mach. Intell., 23, 10, 1120-1136, (2001)
[20] Mahé, P.; Ueda, N.; Akutsu, T.; Perret, J.-L.; Vert, J.-P., Extensions of marginalized graph kernels, Proc. 21st Int. Conf. on Machine Learning, 70, (2004), Alberta, Canada
[21] Peng, L.; Zhang, Z.; Liu, Y.; Huang, Z., Combining graph kernel with a topic model-based encoding scheme, J. Comput. Inform. Syst., 10, 15, 6687-6694, (2014)
[22] Ramon, J.; Gärtner, T., Expressivity versus efficiency of graph kernels, First Int. Workshop on Mining Graphs, Trees and Sequences, 65-74, (2003)
[23] Saeid, N.; Begüm, D.; Lorenzo, B.; Abdolreza, S.; Saeid, H., Multiple kernel learning for remote sensing image classification, IEEE Trans. Geosci. Remote Sens., 1-19, (2017)
[24] Schölkopf, B.; Smola, A. J., Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, (2002), MIT Press
[25] Shawe-Taylor, J.; Cristianini, N., Kernel Methods for Pattern Analysis, (2004), Cambridge University Press
[26] Shervashidze, N.; Petri, T.; Mehlhorn, K.; Borgwardt, K. M.; Vishwanathan, S. V. N., Efficient graphlet kernels for large graph comparison, Int. Conf. on Artificial Intelligence and Statistics, 488-495, (2009), Florida, USA
[27] Shervashidze, N.; Schweitzer, P.; Van Leeuwen, E. J.; Mehlhorn, K.; Borgwardt, K. M., Weisfeiler-lehman graph kernels, J. Mach. Learn. Res., 12, 2539-2561, (2011) · Zbl 1280.68194
[28] Smola, A. J.; Kondor, R., Learning Theory and Kernel Machines, Kernels and regularization on graphs, 144-158, (2003), Springer · Zbl 1274.68351
[29] Vishwanathan, S. V. N.; Schraudolph, N. N.; Kondor, R.; Borgwardt, K. M., Graph kernels, J. Mach. Learn. Res., 11, 1201-1242, (2010) · Zbl 1242.05112
[30] Xu, L.; Chen, X.; Niu, X.; Zhang, C.; Luo, B., A multiple attributes convolution kernel with reproducing property, Pattern Anal. Appl., 20, 2, 485-494, (2017)
[31] Xu, L.; Jiang, X.; Bai, L.; Xiao, J.; Luo, B., A hybrid reproducing graph kernel based on information entropy, Pattern Recogn., 73, 89-98, (2018)
[32] Xu, L.; Luo, B.; Tang, Y.; Ma, X., An efficient multiple kernel learning in reproducing kernel Hilbert spaces (RKHS), Int. J. Wavelets, Multiresolut. Inform. Process., 13, 2, 1-13, (2015) · Zbl 1329.68225
[33] Xu, L.; Niu, X.; Xie, J.; Abel, A.; Luo, B., A local-global mixed kernel with reproducing property, Neurocomput., 168, 190-199, (2015)
[34] Xu, L.; Xie, J.; Wang, X.; Luo, B., Graph-Based Representations in Pattern Recognition, A mixed weisfeiler-lehman graph kernel, 242-251, (2015), Springer
[35] Yanfeng, G.; Jocelyn, C.; Xiuping, J.; Atli, B. J., Multiple kernel learning for hyperspectral image classification: A review, IEEE Trans. Geosci. Remote Sens., 55, 11, 6547-6565, (2017)
[36] Zhang, L.; Song, M.; Liu, X.; Bu, J.; Chen, C., Fast multi-view segment graph kernel for object classification, Signal Process., 93, 6, 1597-1607, (2013)
[37] Zheng, S.; Liu, J.; Tian, J. W., An efficient star acquisition method based on svm with mixtures of kernels, Pattern Recogn. Lett., 26, 2, 147-165, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.