×

zbMATH — the first resource for mathematics

Fuzzy Laplace transform method for the Ulam stability of linear fuzzy differential equations of first order with constant coefficients. (English) Zbl 1380.34006
Authors’ abstract: In the present paper, the notion of fuzzy multiplication-convolution is introduced. Meantime, an important property is derived, which is similar to the Laplace transform of an ordinary convolution. By using the fuzzy Laplace transform and the preceding property, this paper deals with the Ulam stability of three variants of first order linear fuzzy differential equations with constant coefficients.
MSC:
34A07 Fuzzy ordinary differential equations
26E50 Fuzzy real analysis
34A30 Linear ordinary differential equations and systems, general
44A10 Laplace transform
34D10 Perturbations of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmadi, Laplace transform formula on fuzzy nth-order derivative and its application in fuzzy ordinary differential equations, Soft Comput 18 pp 2461– (2014) · Zbl 1336.34007 · doi:10.1007/s00500-014-1224-x
[2] Allahviranloo, Fuzzy Laplace transforms, Soft Comput 14 pp 235– (2010) · Zbl 1187.44001 · doi:10.1007/s00500-008-0397-6
[3] Alsina, On some inequalities and stability results related to the exponential function, J Inequal Appl 2 pp 373– (1998) · Zbl 0918.39009
[4] Anastassiou, On a fuzzy trigonometric approximation theorem of Weierstrass-type, J Fuzzy Math 9 pp 701– (2001) · Zbl 1004.42005
[5] Aubin, Fuzzy differential inclusions, Probl Control Inf Theory 19 pp 55– (1990) · Zbl 0718.93039
[6] Barros, Fuzzy differential equations: An approach via fuzzification of the derivative operator, Fuzzy Sets Syst 230 pp 39– (2013) · Zbl 1314.34006 · doi:10.1016/j.fss.2013.03.004
[7] Bede, Generalizations of differentiability of fuzzy number valued function with application to fuzzy differential equations, Fuzzy Sets Syst 151 pp 581– (2005) · Zbl 1061.26024 · doi:10.1016/j.fss.2004.08.001
[8] Bede, First order linear fuzzy differential equations under generalized differentiability, Inf Sci 177 pp 1648– (2007) · Zbl 1119.34003 · doi:10.1016/j.ins.2006.08.021
[9] Bede, Generalized differentiability of fuzzyvalued functions, Fuzzy Sets Syst 230 pp 119– (2013) · Zbl 1314.26037 · doi:10.1016/j.fss.2012.10.003
[10] Chalco-Cano, On new solutions of fuzzy differential equations, Chaos Solition Fract 38 pp 112– (2008) · Zbl 1142.34309 · doi:10.1016/j.chaos.2006.10.043
[11] Jung S.M. , Legendre’s differential equation and its Hyers-Ulam stability, Abstr Appl Anal 2007 14. Article ID 56419.
[12] Kaleva, Fuzzy differential equations, Fuzzy Sets Syst 24 pp 301– (1987) · Zbl 0646.34019 · doi:10.1016/0165-0114(87)90029-7
[13] Khastan, Variation of constant formula for first order fuzzy differential equations, Fuzzy Sets Syst 177 pp 20– (2011) · Zbl 1250.34005 · doi:10.1016/j.fss.2011.02.020
[14] Miura, On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J Math 24 pp 467– (2001) · Zbl 1002.39039 · doi:10.3836/tjm/1255958187
[15] Miura, On the Hyers-Ulam stability of a differentiable map, Sci Math Japan 55 pp 17– (2002) · Zbl 1025.47041
[16] Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt Prace Mat 13 pp 259– (1993)
[17] Rezaei, Laplace transform and Hyers-Ulam stability of linear differential equations, J Math Anal Appl 403 pp 244– (2013) · Zbl 1286.34077 · doi:10.1016/j.jmaa.2013.02.034
[18] Salahshour, Applications of fuzzy Laplace transforms, Soft Comput 17 pp 145– (2013) · Zbl 1264.44002 · doi:10.1007/s00500-012-0907-4
[19] Shen, On the Ulam stability of first order linear fuzzy differential equations under generalized differentiability, Fuzzy Sets Syst 280 pp 27– (2015) · Zbl 1377.34004 · doi:10.1016/j.fss.2015.01.002
[20] Shen, Hyers-Ulam-Rassias stability of first order linear partial fuzzy differential equations under generalized differentiability, Adv Differ Equ 2015 pp 351– (2015) · Zbl 1422.34007 · doi:10.1186/s13662-015-0685-2
[21] Shen, A fixed point approach to the Ulam stability of fuzzy differential equations under generalized differentiability, J Intell Fuzzy Syst 30 pp 3253– (2016) · Zbl 1366.34006 · doi:10.3233/IFS-152073
[22] Takahasi, On the Hyers-Ulam stability of the Banach space-valued differential equation y’ = \(\lambda\)y, Bull Korean Math Soc 39 pp 309– (2002) · Zbl 1011.34046 · doi:10.4134/BKMS.2002.39.2.309
[23] Wang, Hyers-Ulam stability of linear differential equations of first order, Appl Math Lett 21 pp 1024– (2008) · Zbl 1159.34041 · doi:10.1016/j.aml.2007.10.020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.