×

Size effect in the bending of a Timoshenko nanobeam. (English) Zbl 1369.74055

Summary: The size effect should be considered due to the large ratio of surface area to volume when the characteristic length of a beam lies in the nanoscale. The size effect in the bending of a Timoshenko nanobeam is investigated in this paper based on a recently developed elastic theory for nanomaterials, in which only the bulk surface energy density and the surface relaxation parameter are involved as independent parameters to characterize the surface property of nanomaterials. In contrast to the Euler nanobeams and the classical Timoshenko beam, not only the size effect but also the shear deformation effect in Timoshenko nanobeams is included. Closed-form solutions of the deflection and the effective elastic modulus for both a fixed-fixed Timoshenko nanobeam and a cantilevered one are achieved. Comparing to the classical solution of Timoshenko beams, the size effect is obviously significant in Timoshenko nanobeams. The shear deformation effect in nanobeams cannot be neglected in contrast to the solution of Euler-Bernoulli nanobeams when the aspect ratio of a nanobeam is relatively small. Furthermore, the size effect exhibits different influences on the bending behavior of nanobeams with different boundary conditions. A nanobeam with a fixed-fixed boundary would be stiffened, while a cantilevered one is softened by the size effect, compared to the classical solution. All the findings are consistent with the existing experimental measurement. The results in this paper should be very useful for the precision design of nanobeam-based devices.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M25 Micromechanics of solids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Rogers, J.A., Someya, T., Huang, Y.G.: Materials and mechanics for stretchable electronics. Science 327, 1603-1607 (2010) · doi:10.1126/science.1182383
[2] Cui, Y., Wei, Q.Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289-1292 (2001) · doi:10.1126/science.1062711
[3] Xie, P., Xiong, Q.H., Fang, Y., Qing, Q., Lieber, C.M.: Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 7, 119-125 (2012) · doi:10.1038/nnano.2011.217
[4] Gong, C., Liang, J., Hu, W., Niu, X., Ma, S., Hahn, H.T., Pei, Q.: A healable, semitransparent silver nanowire-polymer composite conductor. Adv. Mater. 25, 4186-4191 (2013) · doi:10.1002/adma.201301069
[5] Liang, H., Upmanyu, M., Huang, H.: Size-dependent elasticity of nanowires: nonlinear effects. Phys. Rev. B 71, 241403 (2005) · doi:10.1103/PhysRevB.71.241403
[6] Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004) · doi:10.1103/PhysRevB.69.165410
[7] Chen, T.Y., Chiu, M.S., Weng, C.N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006) · doi:10.1063/1.2356094
[8] Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73, 235409 (2006) · doi:10.1103/PhysRevB.73.235409
[9] Nam, C.Y., Jaroenapibal, P., Tham, D., Luzzi, D.E., Evoy, S., Fischer, J.E.: Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett. 6, 153-158 (2006) · doi:10.1021/nl051860m
[10] Gavan, K.B., Westra, H.J., van der Drift, E.W., Venstra, W.J., van der Zant, H.S.: Size-dependent effective Young’s modulus of silicon nitride cantilevers. Appl. Phys. Lett. 94, 233108 (2009) · doi:10.1063/1.3152772
[11] Sadeghian, H., Yang, C.K., Goosen, J.F., Bossche, A., Staufer, U., French, P.J., van Keulen, F.: Effects of size and defects on the elasticity of silicon nanocantilevers. J. Micromech. Microeng. 20, 064012 (2010) · doi:10.1088/0960-1317/20/6/064012
[12] Celik, E., Guven, I., Madenci, E.: Mechanical characterization of nickel nanowires by using a customized atomic force microscope. Nanotechnology 22, 155702 (2011) · doi:10.1088/0957-4484/22/15/155702
[13] Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291-323 (1975) · Zbl 0326.73001 · doi:10.1007/BF00261375
[14] Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431-440 (1978) · Zbl 0377.73001 · doi:10.1016/0020-7683(78)90008-2
[15] Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827-1854 (2005) · Zbl 1120.74683 · doi:10.1016/j.jmps.2005.02.012
[16] Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574-1596 (2005) · Zbl 1120.74718 · doi:10.1016/j.jmps.2005.02.009
[17] Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007) · doi:10.1063/1.2746950
[18] He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798-1802 (2008) · doi:10.1021/nl0733233
[19] Chhapadia, P., Mohammadi, P., Sharma, P.: Curvature-dependent surface energy and implications for nanostructures. J. Mech. Phys. Solids 59, 2103-2115 (2011) · Zbl 1270.74018 · doi:10.1016/j.jmps.2011.06.007
[20] Chiu, M.S., Chen, T.: Effects of high-order surface stress on static bending behavior of nanowires. Phys. E 44, 714-718 (2011) · doi:10.1016/j.physe.2011.11.016
[21] Song, F., Huang, G., Park, H., Liu, X.: A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. Int. J. Solids Struct. 48, 2154-2163 (2011) · doi:10.1016/j.ijsolstr.2011.03.021
[22] Liu, J., Mei, Y., Xia, R., Zhu, W.: Large displacement of a static bending nanowire with surface effects. Phys. E 44, 2050-2055 (2012) · doi:10.1016/j.physe.2012.06.009
[23] Park, S., Kim, J., Park, J., Lee, J., Choi, Y., Kwon, O.: Molecular dynamics study on size-dependent elastic properties of silicon nanocantilevers. Thin Solid Films 492, 285-289 (2005) · doi:10.1016/j.tsf.2005.06.056
[24] Mohammadi, P., Sharma, P.: Atomistic elucidation of the effect of surface roughness on curvature-dependent surface energy, surface stress, and elasticity. Appl. Phys. Lett. 100, 133110 (2012) · doi:10.1063/1.3695069
[25] Georgakaki, D., Ziogos, O., Polatoglou, H.: Vibrational and mechanical properties of Si/Ge nanowires as resonators: a molecular dynamics study. Phys. Status Solidi Appl. Mater. 211, 267-276 (2014) · doi:10.1002/pssa.201330087
[26] Wang, G.F., Feng, X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D: Appl. Phys. 42, 155411 (2009) · doi:10.1088/0022-3727/42/15/155411
[27] Jiang, L.Y., Yan, Z.: Timoshenko beam model for static bending of nanowires with surface effects. Phys. E 42, 2274-2279 (2010) · doi:10.1016/j.physe.2010.05.007
[28] Li, X.F., Zhang, H., Lee, K.Y.: Dependence of Young’s modulus of nanowires on surface effect. Int. J. Mech. Sci. 81, 120-125 (2014) · doi:10.1016/j.ijmecsci.2014.02.018
[29] Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139 (2000) · doi:10.1088/0957-4484/11/3/301
[30] Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005) · doi:10.1103/PhysRevB.71.094104
[31] Mi, C., Jun, S., Kouris, D.A., Kim, S.Y.: Atomistic calculations of interface elastic properties in noncoherent metallic bilayers. Phys. Rev. B 77, 075425 (2008) · doi:10.1103/PhysRevB.77.075425
[32] Chen, S.H., Yao, Y.: Elastic theory of nanomaterials based on surface-energy density. J. Appl. Mech. 81, 121002 (2014) · doi:10.1115/1.4028780
[33] Yao, Y., Chen, S.H.: Surface effect in the bending of nanowires. Mech. Mater. 100, 12-21 (2016) · doi:10.1016/j.mechmat.2016.06.005
[34] Yao, Y., Chen, S.H.: Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials. J. Appl. Phys. 118, 044303 (2015) · doi:10.1063/1.4927290
[35] Yao, Y., Chen, S.: Buckling behavior of nanowires predicted by a new surface energy density model. Acta Mech. 227, 1799-1811 (2016) · Zbl 1344.74021
[36] Huang, Z.P., Sun, L.: Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech. 190, 151-163 (2007) · Zbl 1117.74047 · doi:10.1007/s00707-006-0381-0
[37] Nix, W.D., Gao, H.J.: An atomistic interpretation of interface stress. Scr. Mater. 39, 1653-1661 (1998) · doi:10.1016/S1359-6462(98)00352-2
[38] Huang, Z.P., Wang, J.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182, 195-210 (2006) · Zbl 1121.74007 · doi:10.1007/s00707-005-0286-3
[39] Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970) · Zbl 0266.73008
[40] Chen, Y., Dorgan Jr., B.L., Mcllroy, D.N., Aston, D.E.: On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires. J. Appl. Phys. 100, 104301 (2006) · doi:10.1063/1.2382265
[41] Diao, J., Gall, K., Dunn, M.L.: Atomistic simulation of the structure and elastic properties of gold nanowires. J. Mech. Phys. Solids 52, 1935-1962 (2004) · Zbl 1115.74303 · doi:10.1016/j.jmps.2004.03.009
[42] Ouyang, G., Li, X., Tan, X., Yang, G.: Surface energy of nanowires. Nanotechnology 19, 045709 (2008) · doi:10.1088/0957-4484/19/04/045709
[43] Olsson, P.A., Park, H.S.: On the importance of surface elastic contributions to the flexural rigidity of nanowires. J. Mech. Phys. Solids 60, 2064-2083 (2012) · doi:10.1016/j.jmps.2012.07.009
[44] Jaccodine, R.: Surface energy of germanium and silicon. J. Electrochem. Soc. 110, 524-527 (1963) · doi:10.1149/1.2425806
[45] Sheng, H., Kramer, M., Cadien, A., Fujita, T., Chen, M.: Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 83, 134118 (2011) · doi:10.1103/PhysRevB.83.134118
[46] Moshtaghin, A.F., Naghdabadi, R., Asghari, M.: Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids. Mech. Mater. 51, 74-87 (2012) · doi:10.1016/j.mechmat.2012.04.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.