Chen, Min; Chen, Yang; Fan, En-Gui The Riemann-Hilbert analysis to the Pollaczek-Jacobi type orthogonal polynomials. (English) Zbl 1426.33025 Stud. Appl. Math. 143, No. 1, 42-80 (2019). MSC: 33C45 33C10 41A60 34M55 PDF BibTeX XML Cite \textit{M. Chen} et al., Stud. Appl. Math. 143, No. 1, 42--80 (2019; Zbl 1426.33025) Full Text: DOI
Chen, Min; Chen, Yang; Fan, En-Gui Critical edge behavior in the perturbed Laguerre unitary ensemble and the Painlevé V transcendent. (English) Zbl 07056511 J. Math. Anal. Appl. 474, No. 1, 572-611 (2019). Reviewer: Tsvetana Stoyanova (Sofia) MSC: 34M55 PDF BibTeX XML Cite \textit{M. Chen} et al., J. Math. Anal. Appl. 474, No. 1, 572--611 (2019; Zbl 07056511) Full Text: DOI
Ding, Yanhui; Chen, Min Positive and negative solutions of impulsive functional differential equations. (English) Zbl 1412.34210 J. Nonlinear Sci. Appl. 10, No. 3, 922-928 (2017). MSC: 34K20 34K45 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{M. Chen}, J. Nonlinear Sci. Appl. 10, No. 3, 922--928 (2017; Zbl 1412.34210) Full Text: DOI
Chen, Min; Chen, Yang; Fan, Engui Perturbed Hankel determinant, correlation functions and Painlevé equations. (English) Zbl 1338.33020 J. Math. Phys. 57, No. 2, 023501, 31 p. (2016). MSC: 33C45 34M55 15A04 15A15 PDF BibTeX XML Cite \textit{M. Chen} et al., J. Math. Phys. 57, No. 2, 023501, 31 p. (2016; Zbl 1338.33020) Full Text: DOI arXiv
Chen, Min; Wang, Jing-hai Necessary and sufficient condition of non-oscillation for second-order linear system. (Chinese. English summary) Zbl 1333.34052 J. Huaqiao Univ., Nat. Sci. 35, No. 3, 358-360 (2014). MSC: 34C10 34A30 PDF BibTeX XML Cite \textit{M. Chen} and \textit{J.-h. Wang}, J. Huaqiao Univ., Nat. Sci. 35, No. 3, 358--360 (2014; Zbl 1333.34052)
Chen, Hongqiu; Chen, Min; Nguyen, Nghiem V. Cnoidal wave solutions to Boussinesq systems. (English) Zbl 1122.35106 Nonlinearity 20, No. 6, 1443-1461 (2007). MSC: 35Q35 37K20 34L30 35Q51 35S15 76B03 76B15 76B25 PDF BibTeX XML Cite \textit{H. Chen} et al., Nonlinearity 20, No. 6, 1443--1461 (2007; Zbl 1122.35106) Full Text: DOI
Chen, M. Differential-difference equations for the radial distribution function of hard rods and hard spheres under Percus-Yevick approximation. (English) Zbl 0391.34042 J. Math. Anal. Appl. 64, 629-650 (1978). MSC: 34K05 PDF BibTeX XML Cite \textit{M. Chen}, J. Math. Anal. Appl. 64, 629--650 (1978; Zbl 0391.34042) Full Text: DOI