×

State feedback impulsive control of computer worm and virus with saturated incidence. (English) Zbl 1414.68014

Summary: A state feedback impulsive model is set up to discuss the spreading and control of the computer worm and virus. Considering the transmission features, saturated infectious is adopted to describe the spreading in the model, and all the treatment measures, such as patching operating system and updating antivirus software, are assumed to take effect instantly. Then the model is analyzed with a novel method, and the existence and stability of order-1 limit cycle are discussed. Finally, the numerical simulation is listed to verify the result of the paper.

MSC:

68M10 Network design and communication in computer systems
34H15 Stabilization of solutions to ordinary differential equations
34K21 Stationary solutions of functional-differential equations
39A23 Periodic solutions of difference equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Y. Cai; Y. Kang; W. Wang, Global stability of the steady states of an epidemic model incorporating intervention strategies, Mathematical Biosciences and Engineering, 14, 1071-1089 (2017) · Zbl 1365.92116 · doi:10.3934/mbe.2017056
[2] L. Chen; X. Liang; Y. Pei, The periodic solutions of the impulsive state feedbck dynamical system, Commun. Math. Biol. Neurosci, 14 (2018)
[3] A. M. Elaiw, Global properties of a class of virus infection models with multitarget cells, Nonlinear Dynamics, 69, 423-435 (2012) · Zbl 1254.92064 · doi:10.1007/s11071-011-0275-0
[4] A. M. Elaiw; R. M. Abukwaik; E. O. Alzahrani, Global properties of a cell mediated immunity in HIV infection model with two classes of target cells and distributed delays, International Journal of Biomathematics, 7, 1450055, 25 pp (2014) · Zbl 1311.34165 · doi:10.1142/S1793524514500557
[5] T. Fukunaga; W. Iwasaki, Inactivity periods and postural change speed can explain atypical postural change patterns of Caenorhabditis elegans mutants, BMC Bioinformatics, 18, p46 (2017) · doi:10.1186/s12859-016-1408-8
[6] H. Guo; L. Chen; X. Song, Qualitative analysis of impulsive state feedback control to an algae-fish system with bistable property, Appl. Math. Comput., 271, 905-922 (2015) · Zbl 1410.93053 · doi:10.1016/j.amc.2015.09.046
[7] J. D. Hernández Guillén; A. Martín del Rey; L. Hernández Encinas, Study of the stability of a SEIRS model for computer worm propagation, Physica A: Statistical Mechanics and its Applications, 479, 411-421 (2017) · Zbl 1495.68017 · doi:10.1016/j.physa.2017.03.023
[8] J. Jia; Z. Jin; L. Chang, Structural calculations and propagation modeling of growing networks based on continuous degree, Mathematical Biosciences and Engineering, 14, 1215-1232 (2017) · Zbl 1364.35385 · doi:10.3934/mbe.2017062
[9] E. Kirmani; C. S. Hood, Analysis of a scanning model of worm propagation, Journal in Computer Virology, 6, 31-42 (2010) · doi:10.1007/s11416-008-0111-3
[10] S. Lefschetz, Contribution to the Theory of Nonlinear Oscillations, Vol. I, Princeton University Press, Princeton, 1950. · Zbl 1341.34002
[11] Z. Li; L. Chen; Z. Liu, Periodic solution of a chemostat model with variable yield and impulsive state feedback control, Appl. Math. Model., 36, 1255-1266 (2012) · Zbl 1243.34017 · doi:10.1016/j.apm.2011.07.069
[12] X. Liang; Y. Pei; Y. Lv, Modeling the state dependent impulse control for computer virus propagation under media coverage, Physica A: Statistical Mechanics and its Applications, 491, 516-527 (2018) · Zbl 1514.34070 · doi:10.1016/j.physa.2017.09.058
[13] B. Liu; Y. Tian; B. Kang, Dynamics on a Holling II predator-prey model with statedependent impulsive control, Int. J. Biomath., 5, 93-110 (2012) · Zbl 1280.92075 · doi:10.1142/S1793524512600066
[14] S. Max, A matter of time: On the transitory nature of cyberweapons, Journal of Strategic Studies, 41, 6-32 (2018)
[15] G. Pang; L. Chen, Periodic solution of the system with impulsive state feedback control, Nonlinear Dynam., 78, 743-753 (2014) · Zbl 1314.93024 · doi:10.1007/s11071-014-1473-3
[16] D. A. Ray, C. B. Ward and B. Munteanu, etc, Investigating the impact of real-world factors on internet worm propagation, Lecture Notes in Computer Science, 4812 (2007), 10-24.
[17] M. Sun, Y. Liu and S. Liu, etc, A novel method for analyzing the stability of periodic solution of impulsive state feedback model, Appl. Math. Comput., 273 (2016), 425-434. · Zbl 1410.34141
[18] Y. Tian; K. Sun; L. Chen, Modelling and qualitative analysis of a predator-prey system with state-dependent impulsive effects, Math. Comput. Simulat., 82, 318-331 (2011) · Zbl 1236.92072 · doi:10.1016/j.matcom.2011.08.003
[19] A. Wang; Y. Xiao; H. Zhu, Dynamics of a filippov epidemic model with limited hospital beds, Mathematical Biosciences and Engineering, 15, 739-764 (2018) · Zbl 1406.92625 · doi:10.3934/mbe.2018033
[20] C. Wei and L. Chen, Periodic Solution of Prey-Predator Model with Beddington-DeAngelis Functional Response and Impulsive State Feedback Control, Journal of Applied Mathematics, 2012 (2012), Art. ID 607105, 17 pp. · Zbl 1263.92053
[21] C. Wei; L. Chen, Homoclinic bifurcation of prey-predator model with impulsive state feedback control, Appl. Math. Comput., 237, 282-292 (2014) · Zbl 1334.92378 · doi:10.1016/j.amc.2014.03.124
[22] X. Xiao, P. Fu and G. Hu, etc, SAIDR: A new dynamic model for SMS-based worm propagation in mobile networks, IEEE Access, 5 (2017), 9935-9943.
[23] W. Xu, L. Chen and S. Chen, etc, An impulsive state feedback control model for releasing white-headed langurs in captive to the wild, Commun. Nonlinear Sci., 34 (2016), 199-209. · Zbl 1510.92266
[24] Y. Ye, Limit Cycle Theory, Shanghai Science and Technology Press, Shanghai, 1984. (in Chinese)
[25] S. Yuan; X. Ji; H. Zhu, Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations, Mathematical Biosciences and Engineering, 14, 1477-1498 (2017) · Zbl 1364.65011 · doi:10.3934/mbe.2017077
[26] Y. Zhang; Y. Li; Q. Zhang; A. Li, Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules, Physica A, 501, 178-187 (2018) · Zbl 1514.92177 · doi:10.1016/j.physa.2018.02.191
[27] M. Zhang; G. Song; L. Chen, A state feedback impulse model for computer worm control, Nonlinear Dynam., 85, 1561-1569 (2016) · Zbl 1349.93172 · doi:10.1007/s11071-016-2779-0
[28] Y. Zhang; Y. Zheng; F. Zhao; X. Liu, Dynamical analysis in a stochastic bioeconomic model with stage-structuring, Nonlinear Dynamics, 84, 1113-1121 (2016) · Zbl 1354.37100 · doi:10.1007/s11071-015-2556-5
[29] M. Zhu; X. Guo; Z. Lin, The risk index for an SIR epidemic model and spatial spreading of the infectious disease, Mathematical Biosciences and Engineering, 14, 1565-1583 (2017) · Zbl 1364.35396 · doi:10.3934/mbe.2017081
[30] C. C. Zou; D. Towsley; W. Gong, On the performance of Internet worm scanning strategies, Performance Evaluation, 63, 700-723 (2006) · doi:10.1016/j.peva.2005.07.032
[31] C. C. Zou; D. Towsley; W. Gong, On the performance of Internet worm scanning strategies, Performance Evaluation, 63, 700-723 (2006) · doi:10.1016/j.peva.2005.07.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.