×

Modeling and analysis of a nonlinear age-structured model for tumor cell populations with quiescence. (English) Zbl 1403.35304

Summary: We present a nonlinear first-order hyperbolic partial differential equation model to describe age-structured tumor cell populations with proliferating and quiescent phases at the avascular stage in vitro. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The existence and uniqueness of solutions are established. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35L40 First-order hyperbolic systems
35B35 Stability in context of PDEs
92C37 Cell biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akimenko, V; Anguelov, R, Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay, J. Biol. Dyn., 11, 75-101, (2016) · doi:10.1080/17513758.2016.1236988
[2] Alzahrani, EO; Asiri, A; El-Dessoky, MM; Kuang, Y, Quiescence as an explanation of Gompertzian tumor growth revisited, Math. Biosci., 254, 76-82, (2014) · Zbl 1325.92041 · doi:10.1016/j.mbs.2014.06.009
[3] Alzahrani, EO; Kuang, Y, Nutrient limitations as an explanation of Gompertzian tumor growth, Discrete Contin. Dyn. Syst. Ser. B, 21, 357-372, (2016) · Zbl 1343.92206 · doi:10.3934/dcdsb.2016.21.357
[4] Araujo, RP; McElwain, DLS, A history of the study of solid tumour growth: the contribution of mathematical modelling, Bull. Math. Biol., 66, 1039-1091, (2004) · Zbl 1334.92187 · doi:10.1016/j.bulm.2003.11.002
[5] Arino, O; Kimmel, M, Asymptotic analysis of a cell-cycle model based on unequal division, SIAM J. Appl. Math., 47, 128-145, (1987) · Zbl 0632.92015 · doi:10.1137/0147008
[6] Arino, O; Sánchez, E; Webb, GF, Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence, J. Math. Anal. Appl., 215, 499-513, (1997) · Zbl 0886.92020 · doi:10.1006/jmaa.1997.5654
[7] Ayati, BP; Webb, GF; Anderson, RA, Computational methods and results for structured multiscale models of tumor invasion, SIAM Multiscale Model. Simul., 5, 1-20, (2006) · Zbl 1182.92039 · doi:10.1137/050629215
[8] Bertalanffy, LV, Quantitative laws in metabolism and growth, Q. Rev. Biol., 32, 217-231, (1957) · doi:10.1086/401873
[9] Bi, P; Ruan, S; Zhang, X, Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays, Chaos, 24, 023101, (2014) · Zbl 1345.92073 · doi:10.1063/1.4870363
[10] Breward, CJW; Byrne, HM; Lweis, CE, A multiphase model describing vascular tumour growth, Bull. Math. Biol., 01, 1-28, (2004)
[11] Brikci, FB; Clairambault, J; Ribba, B; Perthame, B, An age-and-cyclin-structured cell population model for healthy and tumoral tissues, J. Math. Biol., 57, 91-110, (2008) · Zbl 1148.92014 · doi:10.1007/s00285-007-0147-x
[12] Busenberg, SN; Iannelli, M; Thieme, HR, Global behavior of an age-sgructured epidemic model, SIAM J. Math. Anal., 22, 1065-1080, (1991) · Zbl 0741.92015 · doi:10.1137/0522069
[13] Carlsson, J, A proliferation gradient in three-dimensional colonies of cultured human glioma cells, Int. J. Cancer, 20, 129-136, (1977) · doi:10.1002/ijc.2910200120
[14] Cherif, A; Dyson, J; Maini, PK; Gupta, S, An age-structured multi-strain epidemic model for antigenically diverse infectious diseases: a multi-locus framework, Nonlinear Anal. Real World Appl., 34, 275-315, (2017) · Zbl 1352.92144 · doi:10.1016/j.nonrwa.2016.09.006
[15] Congar, AD; Ziskin, MC, Growth of Mammalian multicellular tumour spheroids, Cancer Res., 43, 558-560, (1983)
[16] Dyson, J; Villella-Bressan, R; Webb, GF, Asynchronous exponential growth in an age structured population of proliferating and quiescent cells, Math. Biosci., 177, 73-83, (2002) · Zbl 0998.92012 · doi:10.1016/S0025-5564(01)00097-9
[17] Florian, JA; Eiseman, JL; Parker, RS, Accounting for quiescent cells in tumour growth and cancer treatment, IEE Proc. Syst. Biol., 152, 185-192, (2005) · doi:10.1049/ip-syb:20050041
[18] Folkman, J, Role of angiogenesis in tumour growth and metastases, Semin. Oncol., 29, 15-19, (2002) · doi:10.1053/sonc.2002.37263
[19] Folkman, J; Cotran, R, Relation of vascular proliferation to tumour growth, Int. Rev. Exp. Pathol., 16, 207-248, (1976)
[20] Folkman, J; Hochberg, M, Self-regulation of growth in three dimensions, Exp. Med., 138, 745-753, (1973) · doi:10.1084/jem.138.4.745
[21] Gabriel, P; Garbett, SP; Quaranta, V; Tyson, DR; Webb, GF, The contribution of age structure to cell population responses to targeted therapeutics, J. Theor. Biol., 311, 19-27, (2012) · Zbl 1337.92046 · doi:10.1016/j.jtbi.2012.07.001
[22] Gurtin, ME; Maccamy, RC, Non-linear age-dependent population dynamics, Arch. Ration. Mech. Anal., 54, 281-300, (1974) · Zbl 0286.92005 · doi:10.1007/BF00250793
[23] Gyllenberg, M; Webb, GF, Age-size structure in populations with quiescence, Math. Biosci., 86, 67-95, (1987) · Zbl 0632.92014 · doi:10.1016/0025-5564(87)90064-2
[24] Gyllenberg, M; Webb, GF, Quiescence as an explanation of Gompertzian tumor growth, Growth Dev. Aging, 53, 25-33, (1989)
[25] Gyllenberg, M; Webb, GF, Asynchronous exponential growth of semigroups of nonlinear operators, J. Math. Anal. Appl., 167, 443-467, (1992) · Zbl 0818.47064 · doi:10.1016/0022-247X(92)90218-3
[26] Hartung, N; Mollard, S; Barbolosi, D; Benabdallah, A; Chapuisat, G; Henry, G; Giacometti, S; Iliadis, A; Ciccolini, J; Faivre, C; Hubert, F, Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice, Cancer Res., 74, 6397-6407, (2014) · doi:10.1158/0008-5472.CAN-14-0721
[27] Hubbard, ME; Byrne, HM, Multiphase modelling of vascular tumour growth in two spatial dimensions, J. Theor. Biol., 316, 70-89, (2013) · Zbl 1397.92333 · doi:10.1016/j.jtbi.2012.09.031
[28] Inaba, H, A semigroup approach to the strong ergodic theorem of the multi-state stable population process, Math. Popul. Stud., 1, 49-77, (1988) · Zbl 0900.92122 · doi:10.1080/08898488809525260
[29] Inaba, H, Mathematical analysis of an age-structured SIR epidemic model with vertical transmission, Discrete Contin. Dyn. Syst. Ser. B, 6, 69-96, (2006) · Zbl 1088.92049 · doi:10.3934/dcdsb.2006.6.69
[30] Laird, AK, Dynamics of tumor growth, Br. J. Cancer, 18, 490-502, (1964) · doi:10.1038/bjc.1964.55
[31] Liotta, LA; Saidel, GM; Kleinerman, J, Stochastic model of metastases formation, Biometrics, 32, 535-550, (1976) · Zbl 0341.92014 · doi:10.2307/2529743
[32] Liu, D; Ruan, S; Zhu, D, Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions, Math. Biosci. Eng., 9, 347-368, (2012) · Zbl 1259.34028 · doi:10.3934/mbe.2012.9.347
[33] Lowengrub, JS; Frieboes, HB; Jin, F; Chuang, YL; Li, X; Macklin, P; Wise, SM; Cristini, V, Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23, r1-r9, (2010) · Zbl 1181.92046 · doi:10.1088/0951-7715/23/1/R01
[34] Newton, PK; Mason, J; Bethel, K; Bazhenova, LA; Nieva, J; Kuhn, P, A stochastic Markov chain model to describe lung cancer growth and metastasis, PLoS ONE, 7, e34637, (2013) · doi:10.1371/journal.pone.0034637
[35] Orme, ME; Chaplain, MAJ, A mathematical model of vascular tumour growth and invasion, Math. Comput. Model., 23, 43-60, (1996) · Zbl 0852.92010 · doi:10.1016/0895-7177(96)00053-2
[36] Pinho, STR; Freedman, HI; Nani, F, A chemotherapy model for the treatment of cancer with metastasis, Math. Comput. Model., 36, 773-803, (2002) · Zbl 1021.92014 · doi:10.1016/S0895-7177(02)00227-3
[37] Ramis-Conde, I; Chaplain, MAJ; Anderson, ARA, Mathematical modeling of cancer cell invasion of tissue, Math. Comput. Model., 47, 533-545, (2008) · Zbl 1148.92021 · doi:10.1016/j.mcm.2007.02.034
[38] Spinelli, L; Torricelli, A; Ubezio, P; Basse, B, Modelling the balance between quiescence and cell death in normal and tumour cell populations, Math. Biosci., 202, 349-370, (2006) · Zbl 1097.92032 · doi:10.1016/j.mbs.2006.03.016
[39] Tan, WY, A stochastic model for the formation of metastatic foci at distant sites, Math. Comput. Model., 12, 1093-1102, (1989) · Zbl 0715.92010 · doi:10.1016/0895-7177(89)90230-6
[40] Tyson, DR; Garbett, SP; Frick, PL; Quaranta, V, Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data, Nat. Methods, 9, 923-928, (2012) · doi:10.1038/nmeth.2138
[41] Ward, JP; King, JR, Mathematical modelling of avascular-tumour growth, IMA J. Math. Appl. Med. Biol., 14, 39-69, (1997) · Zbl 0866.92011 · doi:10.1093/imammb/14.1.39
[42] Ward, JP; King, JR, Mathematical modelling of avascular-tumour growth II: modelling growth saturation, IMA J. Math. Appl. Med. Biol., 16, 171-211, (1999) · Zbl 0943.92019 · doi:10.1093/imammb/16.2.171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.