×

zbMATH — the first resource for mathematics

Modeling the importation and local transmission of vector-borne diseases in Florida: the case of Zika outbreak in 2016. (English) Zbl 1406.92560
Summary: Chikungunya, dengue, and Zika viruses are all transmitted by Aedes aegypti and Aedes albopictus mosquito species, had been imported to Florida and caused local outbreaks. We propose a deterministic model to study the importation and local transmission of these mosquito-borne diseases. The purpose is to model and mimic the importation of these viruses to Florida via travelers, local infections in domestic mosquitoes by imported travelers, and finally non-travel related transmissions to local humans by infected local mosquitoes. As a case study, the model will be used to simulate the accumulative Zika cases in Florida. Since the disease system is driven by a continuing input of infections from outside sources, orthodox analytic methods based on the calculation of the basic reproduction number are inadequate to describe and predict their behavior. Via steady-state analysis and sensitivity analysis, effective control and prevention measures for these mosquito-borne diseases are tested.
MSC:
92D30 Epidemiology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andraud, M.; Hens, N.; Marais, C.; Beutels, P., Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PLoS ONE, 7, 11, e49085, (2012)
[2] American Mosquito Control Association: Mosquito-Borne Diseases, 2016. Last updated July 30, 2017. http://www.mosquito.org/mosquito-borne-diseases.
[3] Bearcroft, W. G.C., Zika virus infection experimentally induced in a human volunteer, Trans. R. Soc. Trop. Med. Hyg., 50, 5, 442-448, (1956)
[4] Boorman, J. P.T.; Porterfield, J. S., A simple technique for infection of mosquitoes with viruses transmission of zika virus, Trans. R. Soc. Trop. Med. Hyg., 50, 3, 238-242, (1956)
[5] Campos, G. S.; Bandeira, A. C.; Sardi, S. I., Zika virus outbreak, bahia, Brazil, Emerg. Infect. Dis., 21, 1885-1886, (2015)
[6] Centers for Disease Control and Prevention (CDC), 2018, Zika virus. Last update July 3, 2018. https://www.cdc.gov/zika/.
[7] Center for Disease Control and Prevention (CDC), 2016a. 2014 Final Data for the United States. Last updated July 30, 2017. http://www.cdc.gov/chikungunya/geo/united-states-2014.html.
[8] Center for Disease Control and Prevention (CDC), 2016b. Chikungunya virus in the United States. Last updated July 30, 2017. http://www.cdc.gov/chikungunya/geo/united-states.html.
[9] Centers for Disease Control and Prevention (CDC), 2016c. Dengue. Last updated January 19, 2018. http://www.cdc.gov/dengue/.
[10] Center for Disease Control and Prevention (CDC), 2016d. Preparedness and Response for Chikungunya Virus: Introduction in the Americas. Last updated July 30, 2017. http://www1.paho.org/hq/dmdocuments/CHIKVEnglish.pdf.
[11] Chen, J.; Huang, J.; Beier, J. C.; Cantrell, S. R.; Cosner, C.; Fuller, D. O.; Zhang, G.; Ruan, S., Modeling and control of local outbreaks of west nile virus in the united states, Discrete Contin. Dyn. Syst. Ser. B, 21, 8, 2423-2449, (2016) · Zbl 1351.37272
[12] Chikaki, E.; Ishikawa, H. A., A dengue transmission model in Thailand considering sequential infections with all four serotypes, J. Infect. Dev. Ctries., 3, 711-722, (2009)
[13] Chowell, G.; Fuentes, R.; Olea, A.; Aguilera, X.; Nesse, H.; Hyman, J. M., The basic reproduction number R0 and effectiveness of reactive interventions during dengue epidemics: the 2002 dengue outbreak in easter island, Chile, Math. Biosci. Eng., 10, 1455-1474, (2013) · Zbl 1273.92051
[14] Cosner, C.; Beier, J. C.; Cantrell, R. S.; Impoinvil, D.; Kapitanski, L.; Potts, M. D.; Troyo, A.; Ruan, S., The effects of human movement on the persistence of vector borne diseases, J. Theors. Biol., 258, 550-560, (2009) · Zbl 1402.92386
[15] Dick, G. W.; Kitchen, S. F.; Haddow, A. J., Zika virus.I. isolations serological specificity, Trans. R. Soc. Trop. Med. Hyg., 46, 5, 509-520, (1952)
[16] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.J., On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 365-382, (1990) · Zbl 0726.92018
[17] Diekmann, O.; Heesterbeek, J. A.P.; Roberts, M. G., The construction of nextgeneration matrices for compartmental epidemic models, J. R. Soc. Interface, 7, (2009)
[18] Dudley, D. M., A rhesus macaque model of Asian-lineage zika virus infection, Nat. Commun., 7, 12204, (2016)
[19] Duffy, M. R., Zika virus outbreak on yap island, federated states of micronesia, N Engl. J. Med., 360, 24, 2536-2543, (2009)
[20] Dumont, Y.; Chiroleu, F., Vector control for the chikungunya disease, Math. Biosci. Eng., 7, 313-345, (2010) · Zbl 1259.92071
[21] Dye, C.; Hasibeder, G., Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others, Trans. R. Soc. Trop. Med. Hyg., 80, 69-77, (1986)
[22] Esteva, L.; Vargas, C., Analysis of a dengue disease transmission model, Math. Biosci., 150, 131-151, (1998) · Zbl 0930.92020
[23] Florida Department of Health (FDH), 2016. Dengue fever. http://www.floridahealth.gov/diseases-and-conditions/dengue/.
[24] Florida Department of Health (FDH), 2018b, Zika virus. http://www.floridahealth.gov/diseases-and-conditions/zika-virus/index.html.
[25] Florida Department of Health (FDH), 2017. Chikungunya fever (CHIK). Last updated July 30, 2017. http://www.floridahealth.gov/diseases-and-conditions/chikungunya/.
[26] Foy, B. D.; Kobylinski, K. C.; Foy, J. L.C.; Blitvich, B. J.; Rosa, A. T.d.; Haddow, A. D.; Lanciotti, R. S.; Tesh, R. B., Probable non-vector-borne transmission of zika virus, colorado, USA, Emerg. Infect. Dis., 17, 5, 880-882, (2011)
[27] Funk, S.; Kucharski, A. J.; Camacho, A.; Eggo, R. M.; Yakob, L.; Murray, L. M., Comparative analysis of dengue and zika outbreaks reveals differences by setting and virus, PLoS Negl. Trop. Dis., 10, 12, e0005173, (2016)
[28] Gao, D.; Lou, Y.; He, D.; Porco, T. C.; Kuang, Y.; Chowell, G.; Ruan, S., Prevention and control of zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., 6, 28070, (2016)
[29] Gao, D.; Ruan, S., A multi-patch malaria model with demographic structure, SIAM J. Appl. Math., 72, 3, 819-841, (2012) · Zbl 1250.92029
[30] Gao, D.; Ruan, S., Malaria models with spatial effects, (Chen, D.; Moulin, B.; Wu, J., Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases, (2014), John Wiley & Sons., Chapter 6), 109-136
[31] Garrett, L., The return of infectious disease, Foreign Affairs, 75, 66-79, (1996)
[32] Gilotra, S. K.; Shah, K. V., Laboratory studies on transmission of chikungunya virus by mosquitoes, Am. J. Epidemiol., 86, 2, 379-385, (1967)
[33] Grubaugh, N. D.; Ladner, J. T.; Kraemer, M. U.G.; Dudas, G.; Tan, A. L., Genome epidemiology reveals multiple introductions of zika virus into the united states, Nature, 546, 401-405, (2017)
[34] Gubler, D. J., Dengue and dengue hemorrhagic fever, Clin. Microbiol. Rev., 11, 480-496, (1998)
[35] Hasibeder, G.; Dye, C., Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment, Theor. Popul. Biol., 33, 31-53, (1988) · Zbl 0647.92015
[36] Keener, J. P.; Keller, H. B., Perturbed bifurcation theory, Arch. Ration. Mech. Anal., 50, 159-175, (1973) · Zbl 0254.47080
[37] Kucharski, A. J.; Funk, S.; Eggo, R. M.; Mallet, H. P.; Edmunds, W. J.; Nilles, E. J., Transmission dynamics of zika virus in island populations: a modelling analysis of the 2013-14 French polynesia outbreak, PLoS Negl. Trop. Dis., 10, 5, e0004726, (2016)
[38] Linares, S.; Wang, X.; Thiem, V. D., Mosquito-associated dengue virus, Key West, florida, USA, 2010, Jpn. J. Infect. Dis., 60, 408-409, (2007)
[39] Liu, P.; Shi, J.; Wang, Y., Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251, 573-600, (2005) · Zbl 1139.47042
[40] Lounibos, L. P., Invasions by insect vectors of human disease, Annu. Rev. Entomol., 47, 233-266, (2002)
[41] Lumsden, W. H.R., An epidemic of virus disease in southern province, tanganyika territory, in 1952-53: II. general description and epidemiology, Trans. R. Soc. Trop. Med. Hyg., 49, 33-57, (1955)
[42] Mack, S., Zika-positive mosquitoes found in Miami Beach, WRLN, (September 1, 2016)
[43] Macnamara, F. N., Zika virus: a report on three cases of human infection during an epidemic of jaundice in nigeria, Trans. R. Soc. Trop. Med. Hyg., 48, 2, 139-145, (1954)
[44] Manore, C. A.; Hickmann, K. S.; Xu, S.; Wearing, H. J.; Hyman, J. M., Comparing dengue and chikungunya emergence and endemic transmission, A. aegypti and A. albopictus, J. Theor. Biol., 356, 174-191, (2014)
[45] Manore, C. A.; Ostfeld, R. S.; Agusto, F. B.; Gaff, H.; LaDeau, S. L., Defining the risk of zika and chikungunya virus transmission in human population centers of the eastern united states, PLoS Negl. Trop. Dis., 11, 1, e0005255, (2017)
[46] MMWR, Zika virus spreads to new areas - region of the americas, may 2015 - January 2016, Morb. Mortal. Wkly. Rep., 65, 55-58, (2016)
[47] Morens, D. M.; Fauci, A. S., Chikungunya at the door - déjà vu all over again?, N. Engl. J. Med., 371, 885-887, (2014)
[48] Moulay, D.; Aziz-Alaoui, M.; Cadivel, M., The chikungunya disease: modeling, vector and transmission global dynamics, Math. Biosci., 229, 50-63, (2011) · Zbl 1208.92044
[49] Musso, D., Zika virus transmission from French polynesia to Brazil, Emerg. Infect. Dis., 21, 10, (2015)
[50] Musso, D.; Nilles, E. J.; Cao-Lormeau, V. M., Rapid spread of emerging zika virus in the Pacific area, Clin. Microbiol. Infect., 20, 10, 595-596, (2014)
[51] Osuna, C. E., Zika viral dynamics and shedding in rhesus and cynomolgus macaques, Nat. Med., 22, 12, 1448-1455, (2016)
[52] Pan American Health Organization (PAHO), 2018a. Chikungunya. www.paho.org/hq/index.php?option=com_topics%view=article%id=343%Itemid=40931%lang=en.
[53] Pan American Health Organization (PAHO), 2018b. Zika virus infection. www.paho.org/hq/index.php?option=com_content%view=article%id=11585%Itemid=41688%lang=en.
[54] Pan American Health Organization and Centers for Disease Control and Prevention (PAHO/CDC), Preparedness and response for chikungunya virus introduction in the americas, (2011)
[55] Petersen, L. R.; Jamieson, D. J.; Powers, A. M.; Honein, M. A., Zika virus, N. Engl. J. Med., 374, 1552-1563, (2016)
[56] Pialoux, G.; Gaüzère, B. A.; Jauréguiberry, S.; Strobel, M., Chikungunya, an epidemic arbovirosis, Lancet Infect. Dis., 7, 319-327, (2007)
[57] Pinho, S. T.R.; Ferreira, C. P.; Esteva, L.; Barreto, F. R.; Silva, V., Modelling the dynamics of dengue real epidemics, Phil. Trans. R. Soc. A, 368, 5679-5693, (2010) · Zbl 1211.37116
[58] Reiner, R. C.; Stoddard, S.; Scott, T. W., Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal, Epidemics, 6, 30-36, (2014)
[59] Rey, J. R., Dengue in Florida (USA), Insects, 5, 991-1000, (2014)
[60] Rivino, L.; Lim, M. Q., CD4\({}^+\) and CD8\({}^+\) T-cell immunity to dengue - lessons for the study of zika virus, Immunology, 150, 2, 146-154, (2017)
[61] Robert, M. A.; Chistofferson, R. C.; Silva, N. J.B.; Vaquez, C.; Mores, C. N.; Wearing, H. J., Modeling mosquito-borne disease spread in U.S. urbanized areas: the case of dengue in Miami, PLoS ONE, 11, 8, e0161365, (2016)
[62] Robinson, M.; Conan, A.; Duong, V.; Ly, S.; Ngan, C., A model for a chikungunya outbreak in a rural Cambodian setting: implications for disease control in uninfected areas, PLoS Negl. Trop. Dis., 8, e3120, (2014)
[63] Rothman, A. L., Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms, Nat. Rev. Immunol., 11, 532-543, (2011)
[64] Ruiz-Moreno, D.; Vargas, I. S.; Olson, K. E.; Harrington, L. C., Modeling dynamic introduction of chikungunya virus in the united states, PLoS Negl. Trop. Dis., 6, 11, e1918, (2012)
[65] Smith, D. L.; Dushoff, J.; McKenzie, F. E., The risk of a mosquito-borne infection in a heterogeneous environment, PLoS Biol., 2, 1957-1963, (2004)
[66] Stoddard, S. T.; Morrison, A. C.; Vazquez-Prokopec, G. M.; Soldan, V. P.; Kochel, T. J., The role of human movement in the transmission of vector borne pathogens, PLoS Negl. Trop. Dis., 3, 7, e481, (2009)
[67] The Singapore Zika Study Group, Outbreak of zika virus infection in Singapore: an epidemiological, entomological, virological, and clinical analysis, Lancet Infect. Dis., 17, 813-821, (2017)
[68] Towers, S.; Brauer, F.; Castillo-Chavez, C.; Falconar, A. K.I.; Mubayi, A.; Romero-Vivas, C. M.E., Estimate of the reproduction number of the 2015 zika virus outbreak in barranquilla, Colombia, and estimation of the relative role of sexual transmission, Epidemics, 17, 50-55, (2016)
[69] United States Census Bureau (USCB), 2013. 2013 Historical Population Data. Last updated Sept. 25, 2017. http://www.census.gov/popest/data/historical/index.html.
[70] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48, (2002) · Zbl 1015.92036
[71] Verma, P.; Sharma, A.; Rao, D. N., Chikungunya infection to immunity: an overview, Curr. Immunol. Rev., 14, 1, (2018)
[72] Wesolowski, A.; Qureshi, T.; Boni, M. F., Impact of human mobility on the emergence of dengue epidemics in pakistan, Proc. Natl. Acad. Sci. USA, 112, 11887-11892, (2015)
[73] WHO, 2015. Dengue and severe dengue, fact sheet n117, updated May 2015. http://www.who.int/mediacentre/factsheets/fs117/en/.
[74] Yakob, L.; Clements, A. C.A., A mathematical model of chikungunya dynamics and control: the major epidemic on Réunion island, PLoS ONE, 8, (2013)
[75] Zanluca, C.; de Melo, V. C.A.; Mosimann, A. L.P.; dos Santos, G. I.V.; dos Santos, C. N.D.; Luz, K., First report of autochthonous transmission of zika virus in Brazil, Mem. Inst. Oswaldo Cruz, 110, 569-572, (2015)
[76] Zhang, Q.; Sun, K.; Chinazzi, M.; Piontti, A. P.y.; Dean, N. E.; Rojas, D. P., Spread of zika virus in the americas, Proc. Natl. Acad. Sci. USA, 114, E4334-E4343, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.