×

zbMATH — the first resource for mathematics

Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames. (English) Zbl 1216.80017
Summary: The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. ‘Back supported’ lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.
MSC:
80A25 Combustion
80A32 Chemically reacting flows
76F65 Direct numerical and large eddy simulation of turbulence
Software:
CHEMKIN
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.proci.2008.05.085
[2] Barlow, R. S., Wang, G., Anselmo-Filho, P., Sweeney, M. S. and Hochgreb, S. 2008. Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers. 46th AIAA Aerospace Sciences Meeting and Exibit. January7–102008, Reno, Nevada. paper 2008–956
[3] DOI: 10.1016/S0010-2180(00)00180-2
[4] DOI: 10.1016/j.combustflame.2007.10.008
[5] DOI: 10.1016/j.proci.2006.07.118
[6] DOI: 10.1016/S0010-2180(99)00148-0
[7] DOI: 10.1016/S0010-2180(01)00328-5
[8] Hélie J., Proc. Combust. Inst. 27 pp 193– (1998)
[9] DOI: 10.1016/j.combustflame.2005.12.001
[10] DOI: 10.1016/S0010-2180(01)00348-0
[11] DOI: 10.1016/j.proci.2006.07.051
[12] DOI: 10.1016/S0082-0784(00)80597-4
[13] DOI: 10.1017/S0022112096007008 · Zbl 0875.76666
[14] DOI: 10.1016/S0082-0784(00)80587-1
[15] DOI: 10.1016/S1540-7489(02)80014-1
[16] DOI: 10.1016/0010-2180(87)90057-5
[17] DOI: 10.1016/S0082-0784(00)80589-5
[18] Hirasawa T., Proc. Combust. Inst. 27 pp 875– (1998)
[19] DOI: 10.1016/S0010-2180(97)89577-6
[20] DOI: 10.1016/S0082-0784(00)80588-3
[21] DOI: 10.1016/0010-2180(95)00217-0
[22] Egolfopoulos F., Proc. Combust. Inst. 25 pp 1365– (1994)
[23] DOI: 10.1016/0010-2180(95)00032-2
[24] DOI: 10.1016/S0010-2180(72)80218-9
[25] DOI: 10.1017/CBO9780511754517
[26] DOI: 10.1016/S1540-7489(02)80200-0
[27] Raja L. L., Proc. Combust. Inst. 27 pp 2249– (1998)
[28] DOI: 10.1080/00102200008947340
[29] Gardiner, B., Yang, H., Qin, Z., Smith, G., Crosley, D., Golden, M., Bowman, C. T., Hanson, R., Davidson, D., Frenklach, M., Moriarty, N. and Eiteener, B. http://me.berkeley.edu/gri_mech
[30] Bilger R. W., Proc. Combust. Inst. 22 pp 475– (1988)
[31] Sankaran, R., Yoo, C. S. and Chen, J. H. 2009. Direct numerical simulation of turbulent premixed flames and the response of flame speeds to intense turbulence. 6th US National Meeting on Combustion. May17–202009, Ann Arbor, Michigan.
[32] Williams, F. A. and Buckmaster, J. D. 1985.The Mathematics of Combustion, 97–131. Philadelphia: Society for Industrial and Applied Mathematics.
[33] DOI: 10.1016/j.combustflame.2005.01.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.