×

Recursive generalized maximum correntropy criterion algorithm with sparse penalty constraints for system identification. (English) Zbl 1366.93679

Summary: To address the sparse system identification problem in a non-Gaussian impulsive noise environment, the Recursive Generalized Maximum Correntropy Criterion (RGMCC) algorithm with sparse penalty constraints is proposed to combat impulsive-inducing instability. Specifically, a recursive algorithm based on the generalized correntropy with a forgetting factor of error is developed to improve the performance of the sparsity aware maximum correntropy criterion algorithms by achieving a robust steady-state error. Considering an unknown sparse system, the \(l_1\)-norm and correntropy induced metric are employed in the RGMCC algorithm to exploit sparsity as well as to mitigate impulsive noise simultaneously. Numerical simulations are given to show that the proposed algorithm is robust while providing robust steady-state estimation performance.

MSC:

93E12 Identification in stochastic control theory
93E15 Stochastic stability in control theory
93E03 Stochastic systems in control theory (general)
93E25 Computational methods in stochastic control (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yousef, Detection of fading overlapping multipath components, Signal Process. 86 (9) pp 2407– (2006) · Zbl 1172.94536 · doi:10.1016/j.sigpro.2005.11.002
[2] Singer, Signal processing for underwater acoustic communications, IEEE Commun. Mag. 47 (1) pp 90– (2009) · doi:10.1109/MCOM.2009.4752683
[3] Liu, Robust exemplar extraction using structured sparse coding, IEEE Trans. Neural Netw. Learn. Systems 26 (8) pp 1816– (2015) · doi:10.1109/TNNLS.2014.2357036
[4] Chen, Sparse LMS for system identification, IEEE Int. Conf. on Acoustics, Speech, and Signal Process. pp 3125– (2009)
[5] Su, Performance analysis of lp-norm constraint least means quare algorithm, IEEE Trans. Signal Process. 60 (5) pp 2223– (2012) · Zbl 1391.65112 · doi:10.1109/TSP.2012.2184537
[6] Li, Norm-adaption penalized least mean square/fourth algorithm for sparse channel estimation, Signal Process. 128 (11) pp 243– (2016a) · doi:10.1016/j.sigpro.2016.04.003
[7] Jahromi, Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification, Signal, Image and Video Process. 9 (6) pp 1353– (2013) · doi:10.1007/s11760-013-0580-9
[8] Luo, Dynamic T-S fuzzy systems identification based on sparse regularization, Asian J. Control 17 (1) pp 274– (2015) · Zbl 1332.93208 · doi:10.1002/asjc.890
[9] Li, Sparse SM-NLMS algorithm based on correntropy criterion, Electron. Lett. 52 (17) pp 1461– (2016) · doi:10.1049/el.2016.1944
[10] Li, Sparse-aware set-membership NLMS algorithms and their application for sparse channel estimation and echo cancelation, AEU-Int. J. of Electron and Commun. 70 (7) pp 895– (2016b) · doi:10.1016/j.aeue.2016.04.001
[11] Gui, Stable adaptive sparse filtering algorithms for estimating multiple-input-multiple-output channels, IET Commun. 8 (7) pp 1032– (2014) · doi:10.1049/iet-com.2013.0665
[12] Babadi, SPARLS: The sparse RLS algorithm, IEEE Trans. Signal Process. 58 (8) pp 4013– (2010) · Zbl 1392.94080 · doi:10.1109/TSP.2010.2048103
[13] Eksioglu, RLS algorithm with convex regularization, IEEE Signal Process. Lett. 18 (8) pp 470– (2011a) · doi:10.1109/LSP.2011.2159373
[14] Eksioglu, Sparsity regularised recursive least squares adaptive filtering, IET Signal Process. 5 (5) pp 480– (2011b) · doi:10.1049/iet-spr.2010.0083
[15] Eksioglu, RLS adaptive filtering with sparsity regularization, Proc. 10th Int. Conf. Inf. Sci. Signal Process. Their Appl. pp 550– (2010)
[16] Mandelbrot, Fractional brownian motions, fractional noises, and applications, SIAM Review 10 (4) pp 422– (1968) · Zbl 0179.47801 · doi:10.1137/1010093
[17] Bouvet, Comparison of adaptive and robust receivers for signal detection in ambient underwater noise, IEEE Trans. Acoust. Speech Signal Process. 37 (5) pp 621– (1989) · doi:10.1109/29.17553
[18] Ma, Sparse least mean p-power algorithms for channel estimation in the presence of impulsive noise, Signal Image and Video Process. 10 (3) pp 503– (2015a) · doi:10.1007/s11760-015-0757-5
[19] Pelekanakis, Adaptive sparse channel estimation under symmetric alpha-stable noise, IEEE Trans. Wirel. Commun. 13 (6) pp 3183– (2014) · doi:10.1109/TWC.2014.042314.131432
[20] Erdogmus, Convergence properties and data efficiency of the minimum error entropy criterion in adaline training, IEEE Trans. Signal Process. 51 (7) pp 1966– (2003) · doi:10.1109/TSP.2003.812843
[21] Liu, Correntropy: Properties and applications in non-Gaussian signal processing, IEEE Trans. Signal Process. 55 (11) pp 5286– (2007) · Zbl 1390.94277 · doi:10.1109/TSP.2007.896065
[22] He, Maximum correntropy criterion for robust face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 33 (8) pp 1561– (2011) · doi:10.1109/TPAMI.2010.220
[23] Liang, Robust MIMO radar target localization via nonconvex optimization, Signal Process. 122 (5) pp 33– (2016) · doi:10.1016/j.sigpro.2015.11.004
[24] Ma, Sparsity aware minimum error entropy algorithms, IEEE Int. Conf. on Acoustics, Speech, and Signal Process. pp 19– (2015b)
[25] Ma, Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments, J. Frankl. Inst.-Eng. Appl. Math. 352 (7) pp 2708– (2015c) · Zbl 1395.93544 · doi:10.1016/j.jfranklin.2015.03.039
[26] Chen, Generalized correntropy for robust adaptive filtering, IEEE Trans. Signal Process. 64 (13) pp 3376– (2016) · doi:10.1109/TSP.2016.2539127
[27] Chen, Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion, IEEE Signal Process. Lett. 21 (7) pp 880– (2014) · doi:10.1109/LSP.2014.2319308
[28] Singh, Using correntropy as a cost function in linear adaptive filters, Proc. Int. Joint Conf. on Neural Networks pp 2950– (2009)
[29] Ma, Estimator with forgetting factor of correntropy and recursive algorithm for traffic network prediction, Proc. Chinese Control and Decision Conf. pp 490– (2013)
[30] Chen, Convergence of a fixed-point algorithm under maximum correntropy criterion, IEEE Signal Process. Lett. 22 (10) pp 1723– (2015) · doi:10.1109/LSP.2015.2428713
[31] Chen, Maximum correntropy estimation is a smoothed MAP estimation, IEEE Signal Process. Lett. 19 (8) pp 491– (2012) · doi:10.1109/LSP.2012.2204435
[32] Seth, Compressed signal reconstruction using the correntropy induced metric, IEEE Int. Conf. on Acoustics, Speech, and Signal Process. pp 3845– (2008)
[33] Li, A class of cross-layer optimization design for congestion and energy efficiency with compressed sensing in wireless sensing networks, Asian J. Control 16 (2) pp 565– (2014) · Zbl 1290.93016 · doi:10.1002/asjc.743
[34] Combettes, Fixed-Point Algorithms for Inverse Problems in Science and Engineering (2011)
[35] Shao, Signal processing with fractional lower order moments: Stable processes and their applications, Proc. of the IEEE 81 (7) pp 986– (1993) · doi:10.1109/5.231338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.