×

Relaxation to stationary states for anomalous diffusion. (English) Zbl 1323.76109

Summary: The fractional Fokker-Planck-Smoluchowski equation serves as a standard description of the anomalous diffusion. Within a current presentation, we study properties of stationary states of the fractional Fokker-Planck-Smoluchowski equation in bounding potentials with special attention to the way in which stationary states are approached. It is demonstrated that the shape of the stationary state depends on exponents characterizing the jump length distributions and the external potential. The convergence rate to the stationary state can be of the double power-law type and is determined solely by the subdiffusion parameter.

MSC:

76R50 Diffusion
76M35 Stochastic analysis applied to problems in fluid mechanics
35R11 Fractional partial differential equations

Software:

mlrnd
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys Rep, 339, 1, 1 (2000) · Zbl 0984.82032
[2] Saichev, A. I.; Zaslavsky, G. M., Fractional kinetic equations: solutions and applications, Chaos, 7, 753 (1997) · Zbl 0933.37029
[3] Metzler, R.; Nonnenmacher, T. F., Space- and time-fractional diffusion and wave equations fractional fokker-planck equations and physical motivation, Chem Phys, 284, 1-2, 67-90 (2002)
[4] Dybiec, B.; Gudowska-Nowak, E., Discriminating between normal and anomalous random walks, Phys Rev E, 80, 4, 061122 (2009)
[5] Dybiec, B., Approaching stationarity: competition between long jumps and long waiting times, J Stat Mech, P03019 (2010)
[6] Dybiec, B.; Chechkin, A. V.; Sokolov, I. M., Stationary states in a single-well potential under Lévy noises, J Stat Mech, P07008 (2010)
[7] Chechkin, A. V.; Klafter, J.; Gonchar, V. Y.; Metzler, R.; Tanatarov, L. V., Stationary states of non-linear oscillators driven by Lévy noise, Chem Phys, 284, 1, 233 (2002)
[8] Chechkin, A. V.; Klafter, J.; Gonchar, V. Y.; Metzler, R.; Tanatarov, L. V., Bifurcation, bimodality, and finite variance in confined Lévy flights, Phys Rev E, 67, 1, 010102 (2003), R
[9] Chechkin, A. V.; Gonchar, V. Y.; Klafter, J.; Metzler, R.; Tanatarov, L. V., Lévy flights in a steep potential well, J Stat Phys, 115, 5/6, 1505 (2004) · Zbl 1157.82305
[10] Chechkin, A. V.; Gonchar, V. Y.; Klafter, J.; Metzler, R., Fundamentals of Lévy flight processes, Adv Chem Phys, 133, B, 439 (2006)
[11] Dybiec, B.; Gudowska-Nowak, E.; Sokolov, I. M., Stationary states in Langevin dynamics under asymmetric Lévy noises, Phys Rev E, 76, 3, 041122 (2007)
[12] Eliazar, I.; Klafter, J., Lévy-driven Langevin systems: target stochasticity, J Stat Phys, 111, 3/4, 739 (2003) · Zbl 1049.82053
[13] Magdziarz, M.; Weron, A., Competition between subdiffusion and Lévy flights: a Monte Carlo approach, Phys Rev E, 75, 5, 056702 (2007)
[14] Magdziarz, M.; Weron, A.; Weron, K., Fractional Fokker-Planck dynamics: stochastic representation and computer simulation, Phys Rev E, 75, 1, 016708 (2007)
[15] Magdziarz, M.; Weron, A.; Klafter, J., Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force, Phys Rev Lett, 101, 21, 210601 (2008)
[16] Metzler, R.; Barkai, E.; Klafter, J., Deriving fractional Fokker-Planck equations from a generalized master equation, Europhys Lett, 46, 4, 431 (1999)
[17] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[18] Glöckle, W. G.; Nonnenmacher, T. F., Fractional relaxation and the time-temperature superposition principle, Rheol Acta, 33, 4, 337-343 (1994)
[19] Sokolov, I. M., Solutions of a class of non-Markovian Fokker-Planck equations, Phys Rev E, 66, 4, 041101 (2002)
[20] Sokolov, I. M., Thermodynamics and fractional Fokker-Planck equations, Phys Rev E, 63, 0, 056111 (2001)
[21] Barkai, E., Fractional Fokker-Planck equation, solution, and application, Phys Rev E, 63, 4, 046118 (2001)
[22] Berberan-Santos, M., Properties of the Mittag-Leffler relaxation function, J Math Chem, 38, 4, 629-635 (2005) · Zbl 1101.33015
[23] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl Numer Math, 56, 1, 80-90 (2006) · Zbl 1086.65087
[24] Scalas, E., The application of continuous-time random walks in finance and economics, Physica A, 362, 225 (2006)
[25] Fulger, D.; Scalas, E.; Germano, G., Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation, Phys Rev E, 77, 2, 021122 (2008)
[26] Eule, S.; Friedrich, R., Subordinated Langevin equations for anomalous diffusion in external potentials – biasing and decoupled external forces, EPL (Europhys Lett), 86, 30008 (2009)
[27] Dybiec, B.; Gudowska-Nowak, E., Subordinated diffusion and CTRW asymptotics, Chaos, 20, 0, 043129 (2010) · Zbl 1311.82037
[28] Feller, W., An Introduction to Probability Theory and its Applications (1968), John Wiley: John Wiley New York · Zbl 0155.23101
[29] Fogedby, H. C., Langevin equations for continuous time Lévy flights, Phys Rev E, 50, 2, 1657 (1994)
[30] Janicki, A.; Weron, A., Simulation and Chaotic Behavior of \(α\)-Stable Stochastic Processes (1994), Marcel Dekker: Marcel Dekker New York
[31] Jespersen, S.; Metzler, R.; Fogedby, H. C., Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions, Phys Rev E, 59, 3, 2736 (1999)
[32] Nolan, J.P., Stable distributions - models for heavy tailed data, Birkhäuser, Boston, 2010, in progress, Chapter 1 online at <http://academic2.american.edu/∼;jpnolan>; Nolan, J.P., Stable distributions - models for heavy tailed data, Birkhäuser, Boston, 2010, in progress, Chapter 1 online at <http://academic2.american.edu/∼;jpnolan>
[33] Pavlyukevich, I.; Dybiec, B.; Chechkin, A. V.; Sokolov, I. M., Lévy ratchet in small noise limit – theory and simulation, Eur Phys J ST, 191, 223-237 (2010)
[34] Schertzer, D.; Larchevêque, M.; Duan, J.; Yanowsky, V. V.; Lovejoy, S., Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises, J Math Phys, 42, 1, 200 (2001) · Zbl 1006.60052
[35] Gardiner, C. W., Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences (2009), Springer-Verlag: Springer-Verlag Berlin · Zbl 0862.60050
[36] Risken, H., The Fokker-Planck equation. Methods of solution and application (1984), Springer-Verlag: Springer-Verlag Berlin · Zbl 0546.60084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.