# zbMATH — the first resource for mathematics

Bounds for the best constant in an improved Hardy-Sobolev inequality. (English) Zbl 1095.26008
Let $$\Omega$$ be a bounded domain in $$\mathbb R^n$$ $$(n \geq 2)$$ with $$0 \in \Omega$$. In [C. N. Adimurthi and M. Ramaswamy, Proc. Am. Math. Soc. 130, No. 2, 489–505 (2002; Zbl 0987.35049)], an improved Hardy-Sobolev inequality was established: for all $$u \in W_0^{1,p} (\Omega)$$,
$\int_\Omega | \nabla u |^p \,dx \geq ({n-p \over p})^p \int_\Omega {| u |^p \over | x |^p} \,dx + C \int_\Omega {| u |^p \over | x |^p} [\log {R \over | x | }]^{-2} \,dx,$ where $$1 < p < n$$, $$R \geq e^{2/p} \sup_\Omega | x |$$ and $$C$$ is a positive constant.
Define $$C = C(n,p,R,\Omega) = \inf_{0 \not = u \in W_0^{1,p} (\Omega)} Q_{\Omega, R} (u)$$ with $Q_{\Omega, R} (u) = \frac{\int_\Omega | \nabla u |^p \,dx - ({n-p \over p})^p \int_\Omega {| u |^p \over | x |^p} \,dx}{\int_\Omega {| u(x) |^p \over | x |^p} (\log {R \over | x |} )^{-2} \,dx}$ to be the best constant of the inequality. In this article, the author shows with an interesting proof that in the first place $$C(n,p,R,\Omega) = C(n,p)$$, that is, the best constant is independent of $$R$$ and $$\Omega$$. Then for $$2 \leq p < n$$, it is shown that $${p-1 \over p^2} ({n-p \over p})^{p-2} \leq C(n, p) \leq {p-1 \over 2} ({n-p \over p})^{p-2}$$.

##### MSC:
 26D10 Inequalities involving derivatives and differential and integral operators 35J20 Variational methods for second-order elliptic equations 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
##### Keywords:
Hardy-Sobolev inequality; best constant
Full Text:
##### References:
 [1] Adimurthi, Chaudhuri, N. and M. Ramaswamy: An improved Hardy-Sobolev inequality and its application. Proc. Amer. Math. Soc. 130 (2002), 489 - 505. · Zbl 0987.35049 · doi:10.1090/S0002-9939-01-06132-9 [2] Adimurthi and M. J. Esteban: An improved Hardy-Sobolev inequality in W 1,p and its applications to Schrödinger operator. Preprint 2002. · Zbl 1089.35035 · doi:10.1007/s00030-005-0009-4 [3] Adimurthi and K. Sandeep: Existence and non-existence of the first eigenvalue of the perturbed Hardy-Sobolev operator. Proc. Roy. Soc. Edinburgh (Sect. A) 132 (2002), 1021 - 1043. 765 · Zbl 1029.35194 · doi:10.1017/S0308210500001992 [4] Bandle, C.: Isoperimetric Inequalities and Applications. London: Pitman 1980. · Zbl 0436.35063 [5] Brézis, H. and M. Marcus: Hardy’s inequality revisited. Ann. Scuola. Norm. Sup. Pisa 25 (1997), 217 - 237. · Zbl 1011.46027 · numdam:ASNSP_1997_4_25_1-2_217_0 · eudml:84286 [6] Brézis, H., Marcus, M. and I. Shafrir: Extremal functions for Hardy’s inequality with weight. J. Funct. Anal. 171 (2000), 177 - 191. · Zbl 0953.26006 · doi:10.1006/jfan.1999.3504 [7] Brézis, H. and J. L. Vázquez: Blowup solutions of some nonlinear elliptic prob- lems. Revista Mat. Univ. Complutense Madrid 10 (1997), 443 - 469. · Zbl 0894.35038 · eudml:44278 [8] Cabré, X. and Y. Martel: Weak eigenfunctions for the linearization of extremal elliptic problems. J. Funct. Anal. 156 (1998), 30 - 56. · Zbl 0908.35044 · doi:10.1006/jfan.1997.3171 [9] Cabré, X. and Y. Martel: Existence versus instantaneous blowup for linear heat equations with singular potentials. C.R. Acad. Sci. Paris 329 (1999), 973 - 978. · Zbl 0940.35105 · doi:10.1016/S0764-4442(00)88588-2 [10] Chaudhuri, N.: On improved Hardy-Sobolev inequality and its application to certain singular problems. Ph.D. Thesis. Bangalore (India): Indian Inst. Sci./Dept. Math. 2001. [11] Chaudhuri, N. and Ramaswamy: Existence of positive solutions of some semi- linear elliptic equations with singular coefficients. Proc. Roy. Soc. Edinburgh (Sect. A) 131 (2001), 1275 - 1295. · Zbl 0997.35020 · doi:10.1017/S0308210500001396 [12] Chaudhuri, N. and K. Sandeep: On a heat problem involving perturbed Hardy- Sobolev operator. Preprint 2001. · Zbl 1052.35067 · doi:10.1017/S0308210500003425 [13] Filippas, S. and A. Tertikas: Optimizing improved Hardy inequalities. J. Funct. Anal. 192 (2002), 186 - 233. · Zbl 1030.26018 · doi:10.1006/jfan.2001.3900 [14] Maz’ja, V. G.: Sobolev Spaces. Berlin et al.: Springer-Verlag 1985. [15] Sandeep, K.: On the first eigenfunction of a perturbed Hardy-Sobolev operator. Preprint 2001. · Zbl 1290.35179 · doi:10.1007/s00030-003-1039-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.