zbMATH — the first resource for mathematics

On derivation of Euler-Lagrange equations for incompressible energy-minimizers. (English) Zbl 1183.35264
The main result of the paper proves that a weak solution \(q\) of the problem \( \nabla q=\text{div}f\) posed in \(\mathcal{D}^{\prime }(U,\mathbb{R}^{n})\) belongs to a Hardy space \(h^{r}(V)\) for any \(V\subset \subset U\). Here \(U\) is a bounded, open, connected and Lipschitz domain of \(\mathbb{R}^{n}\), \( n\geq 2\) and \(f\) is a second-order tensor whose components belong to \( h^{r}(U)\). Moreover \(q\) can be locally represented as the sum of singular integrals which involve Calderon-Zygmund kernels and the components of \(f\). The main tools of this result are the use of mollifiers, \(h^{r}\)-estimates on different singular integrals and the properties of Calderon-Zygmund kernels. The last parts of the paper present applications of this general result to special cases. The authors first consider an incompressible Mooney-Rivlin bulk energy. They here prove the existence of a hydrostatic pressure \(q\) as solution of the problem \(\nabla q=\text{div}\widetilde{ \sigma }\) where \(\widetilde{\sigma }\) is the Cauchy-Green strain tensor associated to the displacement field \(\mathbf{u}\) which is a continuous and injective local minimizer of the bulk energy. They derive the Euler-Lagrange equations for the solution \((\mathbf{u},p)\) with \(p=q\circ \mathbf{u}\). The last result concerns a partial regularity of area-preserving minimizers.

35Q74 PDEs in connection with mechanics of deformable solids
35B65 Smoothness and regularity of solutions to PDEs
42B35 Function spaces arising in harmonic analysis
49K20 Optimality conditions for problems involving partial differential equations
74B20 Nonlinear elasticity
74G65 Energy minimization in equilibrium problems in solid mechanics
Full Text: DOI arXiv
[1] Ball J.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 64, 337–403 (1977) · Zbl 0368.73040
[2] Bogovskii M.E.: Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248, 1037–1040 (1979)
[3] Bauman P., Owen N.C., Phillips D.: Maximum principles and an a priori estimates for an incompressible material in nonlinear elasticity. Comm. Partial Differ. Equ. 17, 1185–1212 (1992) · Zbl 0777.35014 · doi:10.1080/03605309208820882
[4] Calderón A.P., Zygmund A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952) · Zbl 0047.10201 · doi:10.1007/BF02392130
[5] Chang D.C., Krantz S.G., Stein E.M.: H p theory on a smooth domain in \({\mathbb{R}^N}\) and elliptic boundary value problems. J. Funct. Anal. 114, 286–347 (1993) · Zbl 0804.35027 · doi:10.1006/jfan.1993.1069
[6] Dautry R., Lions J.L.: Mathematical analysis and numerical methods for science and technology. Functional and Variational Methods, vol. 2. Springer, Heidelberg (1988)
[7] Evans L.C.: Partial differential equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998) · Zbl 0902.35002
[8] Evans L.C., Gariepy R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[9] Evans L.C., Gariepy R.F.: On the partial regularity of energy-minimizing, area-preserving maps. Calc. Var. Partial Differ. Equ. 9, 357–372 (1999) · Zbl 0954.49024 · doi:10.1007/s005260050145
[10] Fefferman C.: Characterizations of bounded mean oscillation. Bull. Am. Math. Soc. 77, 587–588 (1971) · Zbl 0229.46051 · doi:10.1090/S0002-9904-1971-12763-5
[11] Fefferman C., Stein E.M.: H p spaces of several variables. Acta Math. 129, 137–193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[12] Giaguinta M., Modica G.: Almost-everywhere regularity results for solutions of nonlinear elliptic systems. Manuscr. Math. 28, 109–158 (1979) · Zbl 0411.35018 · doi:10.1007/BF01647969
[13] Goldberg D.: A local version of real Hardy spaces. Duke Math. J. 46, 27–42 (1979) · Zbl 0409.46060 · doi:10.1215/S0012-7094-79-04603-9
[14] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001) · Zbl 1042.35002
[15] Heinonen J., Koskela P.: Sobolev mappings with integrable dilatations. Arch. Rational Mech. Anal. 125, 81–97 (1993) · Zbl 0792.30016 · doi:10.1007/BF00411478
[16] Iwaniec T., Šverak V.: On mappings with integrable dilatiation. Proc. Am. Math. Soc 118, 181–188 (1993) · Zbl 0784.30015 · doi:10.1090/S0002-9939-1993-1160301-5
[17] LeTallec P., Oden J.T.: Existence and characterization of hydrostatic pressure in finite deformations of incompressible elastic bodies. J. Elast. 11, 341–357 (1981) · Zbl 0483.73035 · doi:10.1007/BF00058078
[18] Miyachi A.: H p spaces over open subsets of \({\mathbb{R}^N}\) . Stud. Math. 95, 205–228 (1990) · Zbl 0716.42017
[19] Ogden R.W.: Non-Linear Elastic Deformations. Ellis Horwood Ltd., Chichester (1984) · Zbl 0541.73044
[20] Stein E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) · Zbl 0207.13501
[21] Stein E.M.: Harmonic analysis: Real-variable methods, Orthogonality, and Oscillatory integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[22] Šverák V.: Regularity properties of deformations with finite energy. Arch. Rat. Mech. Anal. 100, 105–127 (1988) · Zbl 0659.73038 · doi:10.1007/BF00282200
[23] Temam R.: Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsha Publishing, Rhode Island (2001) · Zbl 0981.35001
[24] Villamor E., Manfredi J.: An extension of Reshetnyak’s theorem. Indiana Univ. Math. J. 47, 1131–1145 (1998) · Zbl 0931.30014 · doi:10.1512/iumj.1998.47.1323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.