zbMATH — the first resource for mathematics

Projective synchronization of a class of complex network based on high-order sliding mode control. (English) Zbl 1281.34092
Summary: Projective synchronization of a class of complex networks is investigated using second-order sliding mode control. The sliding surface and the control input are designed based on stability theory. The Burgers system with spatiotemporal chaotic behavior in the physics domain is taken as nodes to constitute the complex network, and the Fisher-Kolmogorov system is taken as the tracking target. The artificial simulation results show that the synchronization technique is effective.

34D06 Synchronization of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
Full Text: DOI
[1] Emelyanov, S.V., Control of first order delay systems by means of an astatic controller and nonlinear correction, Autom. Remote Control, 20, 983-991, (1959)
[2] Utkin, V., Variable structure systems with sliding modes, IEEE Trans. Autom. Control, 22, 212-222, (1977) · Zbl 0382.93036
[3] Yazdanbakhsh, O.; Hosseinnia, S.; Askari, J., Synchronization of unified chaotic system by sliding mode/mixed \(H\)_{2}/\(H\)_{∞} control, Nonlinear Dyn., 67, 1903-1912, (2012) · Zbl 1243.93031
[4] Aghababa, M.P., Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique, Nonlinear Dyn., 69, 247-261, (2012) · Zbl 1253.93016
[5] Delavari, H.; Ghader, R.; Ranjbar, A.; Momani, S., Fuzzy fractional order sliding mode controller for nonlinear systems, Commun. Nonlinear Sci. Numer. Simul., 15, 963-978, (2010) · Zbl 1221.93140
[6] Nastaran, V.; Khellat, F., Projective synchronization of chaotic time-delayed systems via sliding mode controller, Chaos Solitons Fractals, 42, 1054-1061, (2009) · Zbl 1198.93185
[7] Milosavljevic, D., General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems, Autom. Remote Control, 46, 307-314, (1985) · Zbl 0583.93043
[8] Sarpturk, S.; Istefanopulos, Y.; Kaynak, O., On the stability of discrete-time sliding mode control systems, IEEE Trans. Autom. Control, 32, 930-932, (1987) · Zbl 0624.93054
[9] Kawamura, A.; Itoh, H.; Sakamoto, K., Chattering reduction of disturbance observer based sliding mode control, IEEE Trans. Ind. Appl., 30, 456-461, (1994)
[10] Chen, D.Y.; Zhang, R.F.; Sprott, J.C.; Ma, X.Y., Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control, Nonlinear Dyn., 70, 1549-1561, (2012) · Zbl 1268.93092
[11] Tavazoei, M.S.; Haeri, M., Synchronization of chaotic fractional-order systems via active sliding mode controller, Physica A, 387, 57-70, (2008)
[12] Mohamed, Z.; Smaoui, N.; Salim, H., Synchronization of the unified chaotic systems using a sliding mode controller, Chaos Solitons Fractals, 42, 3197-3209, (2009) · Zbl 1198.93024
[13] Roopaei, M.; Sahraei, B.R.; Lin, T.C., Adaptive sliding mode control in a novel class of chaotic systems, Commun. Nonlinear Sci. Numer. Simul., 15, 4158-4170, (2010) · Zbl 1222.93124
[14] Kalsi, K.; Lian, J.; Hui, S.; Żak, S.H., Sliding mode observers for systems with unknown input: a high-gain approach, Automatica, 46, 347-353, (2010) · Zbl 1205.93028
[15] Kachroo, P.; Tomizuka, M., Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems, IEEE Trans. Autom. Control, 41, 1063-1068, (1996) · Zbl 0858.93022
[16] Yanada, H.; Ohnishi, H., Frequency-shaped sliding mode control of an electrohydraulic servomotor, J. Syst. Control Dyn., 213, 441-448, (1999)
[17] Wong, L.J.; Leung, F.H.F.; Tam, P.K.S., A chattering elimination algorithm for sliding mode control of uncertain non-linear systems, Mechatronics, 8, 765-775, (1998)
[18] Edwards, C., A practical method for the design of sliding mode controllers using linear matrix inequalities, Automatica, 40, 1761-1769, (2004) · Zbl 1079.93014
[19] Xu, J.X.; Lee, T.H.; Wang, M.; Yu, X.H., Design of variable structure controllers with continuous switching control, Int. J. Control, 65, 409-431, (1996) · Zbl 0863.93012
[20] Boiko, I.; Fridman, L.; Iriarte, R.; Pisano, A.; Usai, E., Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators, Automatica, 42, 833-839, (2006) · Zbl 1137.93335
[21] Yamasaki, T.; Balakrishnan, S.N.; Takano, H., Integrated guidance and autopilot design for a chasing UAV via high-order sliding modes, J. Franklin Inst., 349, 531-558, (2012) · Zbl 1254.93059
[22] Zhu, Q.Y.; Ma, Y.W., A high order accurate upwind compact scheme for solving Navier-Stokes equations, Comput. Mech., 17, 379-384, (2000) · Zbl 0970.93017
[23] Manne, K.K.; Hurd, A.J.; Kenkre, V.M., Nonlinear waves in reaction-diffusion systems: the effect of transport memory, Phys. Rev. E, 61, 4177-4184, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.