×

Gravitational perturbations from NHEK to Kerr. (English) Zbl 1468.83025

Summary: We revisit the spectrum of linear axisymmetric gravitational perturbations of the (near-)extreme Kerr black hole. Our aim is to characterise those perturbations that are responsible for the deviations away from extremality, and to contrast them with the linearized perturbations treated in the Newman-Penrose formalism. For the near horizon region of the (near-)extreme Kerr solution, i.e. the (near-)NHEK background, we provide a complete characterisation of axisymmetric modes. This involves an infinite tower of propagating modes together with the much subtler low-lying mode sectors that contain the deformations driving the black hole away from extremality. Our analysis includes their effects on the line element, their contributions to Iyer-Wald charges around the NHEK geometry, and how to reconstitute them as gravitational perturbations on Kerr. We present in detail how regularity conditions along the angular variables modify the dynamical properties of the low-lying sector, and in particular their role in the new developments of nearly-\( \mathrm{AdS}_2\) holography.

MSC:

83C57 Black holes
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
53Z05 Applications of differential geometry to physics

Software:

Ringdown
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Wald, RM, On perturbations of a Kerr black hole, J. Math. Phys., 14, 1453 (1973) · doi:10.1063/1.1666203
[2] Danzmann, K., LISA: Laser interferometer space antenna for gravitational wave measurements, Class. Quant. Grav., 13, A247 (1996) · doi:10.1088/0264-9381/13/11A/033
[3] Amaro-Seoane, P.; Gair, JR; Pound, A.; Hughes, SA; Sopuerta, CF, Research Update on Extreme-Mass-Ratio Inspirals, J. Phys. Conf. Ser., 610, 012002 (2015) · doi:10.1088/1742-6596/610/1/012002
[4] L. Barack and C. Cutler, LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy, Phys. Rev. D69 (2004) 082005 [gr-qc/0310125] [INSPIRE].
[5] Chua, AJK; Moore, CJ; Gair, JR, Augmented kludge waveforms for detecting extreme-mass-ratio inspirals, Phys. Rev. D, 96, 044005 (2017) · doi:10.1103/PhysRevD.96.044005
[6] Gair, JR; Vallisneri, M.; Larson, SL; Baker, JG, Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors, Living Rev. Rel., 16, 7 (2013) · doi:10.12942/lrr-2013-7
[7] K. Glampedakis and S. Babak, Mapping spacetimes with LISA: Inspiral of a test-body in a ‘quasi-Kerr’ field, Class. Quant. Grav.23 (2006) 4167 [gr-qc/0510057] [INSPIRE]. · Zbl 1101.83304
[8] L. Barack and C. Cutler, Using LISA EMRI sources to test off-Kerr deviations in the geometry of massive black holes, Phys. Rev. D75 (2007) 042003 [gr-qc/0612029] [INSPIRE].
[9] Barausse, E., Prospects for Fundamental Physics with LISA, Gen. Rel. Grav., 52, 81 (2020) · doi:10.1007/s10714-020-02691-1
[10] Yang, H.; Zimmerman, A.; Zenginoğlu, A.; Zhang, F.; Berti, E.; Chen, Y., Quasinormal modes of nearly extremal Kerr spacetimes: spectrum bifurcation and power-law ringdown, Phys. Rev. D, 88, 044047 (2013) · doi:10.1103/PhysRevD.88.044047
[11] S.E. Gralla, S.A. Hughes and N. Warburton, Inspiral into Gargantua, Class. Quant. Grav.33 (2016) 155002 [Erratum ibid.37 (2020) 109501] [arXiv:1603.01221] [INSPIRE]. · Zbl 1346.83026
[12] Gralla, SE; Porfyriadis, AP; Warburton, N., Particle on the Innermost Stable Circular Orbit of a Rapidly Spinning Black Hole, Phys. Rev. D, 92, 064029 (2015) · doi:10.1103/PhysRevD.92.064029
[13] Chatziioannou, K., Measuring the properties of nearly extremal black holes with gravitational waves, Phys. Rev. D, 98, 044028 (2018) · doi:10.1103/PhysRevD.98.044028
[14] van Putten, MHPM, Near-extremal Black Holes as Initial Conditions of Long GRB Supernovae and Probes of Their Gravitational Wave Emission, Astrophys. J., 810, 7 (2015) · doi:10.1088/0004-637X/810/1/7
[15] Porfyriadis, AP; Strominger, A., Gravity waves from the Kerr/CFT correspondence, Phys. Rev. D, 90, 044038 (2014) · doi:10.1103/PhysRevD.90.044038
[16] Hadar, S.; Porfyriadis, AP; Strominger, A., Gravity Waves from Extreme-Mass-Ratio Plunges into Kerr Black Holes, Phys. Rev. D, 90, 064045 (2014) · doi:10.1103/PhysRevD.90.064045
[17] Hadar, S.; Porfyriadis, AP; Strominger, A., Fast plunges into Kerr black holes, JHEP, 07, 078 (2015) · Zbl 1388.83454 · doi:10.1007/JHEP07(2015)078
[18] Compère, G.; Fransen, K.; Hertog, T.; Long, J., Gravitational waves from plunges into Gargantua, Class. Quant. Grav., 35, 104002 (2018) · Zbl 1391.83033 · doi:10.1088/1361-6382/aab99e
[19] Compère, G.; Fransen, K.; Jonas, C., Transition from inspiral to plunge into a highly spinning black hole, Class. Quant. Grav., 37, 095013 (2020) · Zbl 1479.83126 · doi:10.1088/1361-6382/ab79d3
[20] Burke, O.; Gair, JR; Simón, J., Transition from Inspiral to Plunge: A Complete Near-Extremal Trajectory and Associated Waveform, Phys. Rev. D, 101, 064026 (2020) · doi:10.1103/PhysRevD.101.064026
[21] A. Ori and K.S. Thorne, The Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole, Phys. Rev. D62 (2000) 124022 [gr-qc/0003032] [INSPIRE].
[22] Burke, O.; Gair, JR; Simón, J.; Edwards, MC, Constraining the spin parameter of near-extremal black holes using LISA, Phys. Rev. D, 102, 124054 (2020) · doi:10.1103/PhysRevD.102.124054
[23] Almheiri, A.; Polchinski, J., Models of AdS_2backreaction and holography, JHEP, 11, 014 (2015) · Zbl 1388.83079 · doi:10.1007/JHEP11(2015)014
[24] J.M. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, Prog. Theor. Exp. Phys.2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[25] S.A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J.185 (1973) 635 [INSPIRE].
[26] W.H. Press and S.A. Teukolsky, Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric, Astrophys. J.185 (1973) 649 [INSPIRE].
[27] S.A. Teukolsky and W.H. Press, Perturbations of a rotating black hole. III — Interaction of the hole with gravitational and electromagnetic radiation, Astrophys. J.193 (1974) 443 [INSPIRE].
[28] Teitelboim, C., Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B, 126, 41 (1983) · doi:10.1016/0370-2693(83)90012-6
[29] Jackiw, R., Lower Dimensional Gravity, Nucl. Phys. B, 252, 343 (1985) · doi:10.1016/0550-3213(85)90448-1
[30] Castro, A.; Godet, V., Breaking away from the near horizon of extreme Kerr, SciPost Phys., 8, 089 (2020) · doi:10.21468/SciPostPhys.8.6.089
[31] Anninos, D.; Anous, T.; D’Agnolo, RT, Marginal deformations & rotating horizons, JHEP, 12, 095 (2017) · Zbl 1383.81175 · doi:10.1007/JHEP12(2017)095
[32] Castro, A.; Larsen, F.; Papadimitriou, I., 5D rotating black holes and the nAdS_2/nCFT_1correspondence, JHEP, 10, 042 (2018) · Zbl 1402.83073 · doi:10.1007/JHEP10(2018)042
[33] Moitra, U.; Sake, SK; Trivedi, SP; Vishal, V., Jackiw-Teitelboim Gravity and Rotating Black Holes, JHEP, 11, 047 (2019) · Zbl 1429.83066 · doi:10.1007/JHEP11(2019)047
[34] Iliesiu, LV; Turiaci, GJ, The statistical mechanics of near-extremal black holes, JHEP, 05, 145 (2021) · Zbl 1466.83053 · doi:10.1007/JHEP05(2021)145
[35] Godet, V.; Marteau, C., New boundary conditions for AdS_2, JHEP, 12, 020 (2020) · Zbl 1457.83042 · doi:10.1007/JHEP12(2020)020
[36] M. Heydeman, L.V. Iliesiu, G.J. Turiaci and W. Zhao, The statistical mechanics of near-BPS black holes, arXiv:2011.01953 [INSPIRE].
[37] Almheiri, A.; Kang, B., Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes, JHEP, 10, 052 (2016) · Zbl 1390.83167 · doi:10.1007/JHEP10(2016)052
[38] M. Cvetič and I. Papadimitriou, AdS_2holographic dictionary, JHEP12 (2016) 008 [Erratum JHEP01 (2017) 120] [arXiv:1608.07018] [INSPIRE]. · Zbl 1390.83186
[39] Gaikwad, A.; Joshi, LK; Mandal, G.; Wadia, SR, Holographic dual to charged SYK from 3D Gravity and Chern-Simons, JHEP, 02, 033 (2020) · Zbl 1435.83149 · doi:10.1007/JHEP02(2020)033
[40] Ghosh, A.; Maxfield, H.; Turiaci, GJ, A universal Schwarzian sector in two-dimensional conformal field theories, JHEP, 05, 104 (2020) · Zbl 1437.83094 · doi:10.1007/JHEP05(2020)104
[41] Castro, A.; Mühlmann, B., Gravitational anomalies in nAdS_2/nCFT_1, Class. Quant. Grav., 37, 145017 (2020) · Zbl 1478.83134 · doi:10.1088/1361-6382/ab8bbb
[42] P. Chaturvedi, I. Papadimitriou, W. Song and B. Yu, AdS_3gravity and the complex SYK models, arXiv:2011.10001 [INSPIRE].
[43] Dias, OJC; Reall, HS; Santos, JE, Kerr-CFT and gravitational perturbations, JHEP, 08, 101 (2009) · doi:10.1088/1126-6708/2009/08/101
[44] Amsel, AJ; Horowitz, GT; Marolf, D.; Roberts, MM, No Dynamics in the Extremal Kerr Throat, JHEP, 09, 044 (2009) · doi:10.1088/1126-6708/2009/09/044
[45] Hartman, T.; Song, W.; Strominger, A., Holographic Derivation of Kerr-Newman Scattering Amplitudes for General Charge and Spin, JHEP, 03, 118 (2010) · Zbl 1271.83054 · doi:10.1007/JHEP03(2010)118
[46] Breitenlohner, P.; Freedman, DZ, Stability in Gauged Extended Supergravity, Annals Phys., 144, 249 (1982) · Zbl 0606.53044 · doi:10.1016/0003-4916(82)90116-6
[47] Hadar, S.; Lupsasca, A.; Porfyriadis, AP, Extreme Black Hole Anabasis, JHEP, 03, 223 (2021) · Zbl 1461.83031 · doi:10.1007/JHEP03(2021)223
[48] Hawking, SW; Hartle, JB, Energy and angular momentum flow into a black hole, Commun. Math. Phys., 27, 283 (1972) · doi:10.1007/BF01645515
[49] Bardeen, JM; Horowitz, GT, The Extreme Kerr throat geometry: A Vacuum analog of AdS_2 × S^2, Phys. Rev. D, 60, 104030 (1999) · doi:10.1103/PhysRevD.60.104030
[50] Guica, M.; Hartman, T.; Song, W.; Strominger, A., The Kerr/CFT Correspondence, Phys. Rev. D, 80, 124008 (2009) · doi:10.1103/PhysRevD.80.124008
[51] Castro, A.; Larsen, F., Near Extremal Kerr Entropy from AdS_2Quantum Gravity, JHEP, 12, 037 (2009) · doi:10.1088/1126-6708/2009/12/037
[52] Kapec, D.; Lupsasca, A., Particle motion near high-spin black holes, Class. Quant. Grav., 37, 015006 (2020) · Zbl 1478.83163 · doi:10.1088/1361-6382/ab519e
[53] Mann, RB, Conservation laws and 2D black holes in dilaton gravity, Phys. Rev. D, 47, 4438 (1993) · doi:10.1103/PhysRevD.47.4438
[54] Teukolsky, SA, Rotating black holes — separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett., 29, 1114 (1972) · doi:10.1103/PhysRevLett.29.1114
[55] Breitenlohner, P.; Freedman, DZ, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B, 115, 197 (1982) · doi:10.1016/0370-2693(82)90643-8
[56] Kinnersley, W.; Walker, M., Uniformly accelerating charged mass in general relativity, Phys. Rev. D, 2, 1359 (1970) · Zbl 1227.83026 · doi:10.1103/PhysRevD.2.1359
[57] V. Pravda and A. Pravdova, Boost rotation symmetric space-times: Review, Czech. J. Phys.50 (2000) 333 [gr-qc/0003067] [INSPIRE]. · Zbl 1059.83010
[58] Strominger, A.; Zhiboedov, A., Superrotations and Black Hole Pair Creation, Class. Quant. Grav., 34, 064002 (2017) · Zbl 1368.83047 · doi:10.1088/1361-6382/aa5b5f
[59] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[60] G. Compère and A. Fiorucci, Advanced Lectures on General Relativity, arXiv:1801.07064 [INSPIRE]. · Zbl 1419.83003
[61] R.M. Wald and A. Zoupas, A General definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D61 (2000) 084027 [gr-qc/9911095] [INSPIRE]. · Zbl 1136.83317
[62] Harlow, D.; Wu, J-Q, Covariant phase space with boundaries, JHEP, 10, 146 (2020) · Zbl 1461.83007 · doi:10.1007/JHEP10(2020)146
[63] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D48 (1993) R3427(R) [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[64] Bredberg, I.; Hartman, T.; Song, W.; Strominger, A., Black Hole Superradiance From Kerr/CFT, JHEP, 04, 019 (2010) · Zbl 1272.83041 · doi:10.1007/JHEP04(2010)019
[65] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, fifth edition, Dover, New York NY U.S.A. (1964). · Zbl 0171.38503
[66] R. Penrose, The geometry of impulsive gravitational waves, in General Relativity: Papers in Honour of J.L. Synge, Clarendon Press (1972), pp. 101-115 [INSPIRE]. · Zbl 0274.53050
[67] Nutku, Y.; Penrose, R., On impulsive gravitational waves, Twistor Newsl., 34, 9 (1992)
[68] J. Podolsky and J.B. Griffiths, Expanding impulsive gravitational waves, Class. Quant. Grav.16 (1999) 2937 [gr-qc/9907022] [INSPIRE]. · Zbl 0935.83006
[69] J.B. Griffiths and P. Docherty, A Disintegrating cosmic string, Class. Quant. Grav.19 (2002) L109 [gr-qc/0204085] [INSPIRE]. · Zbl 1002.83053
[70] Cohen, J.; Kegeles, L., Space-time perturbations, Phys. Lett. A, 54, 5 (1975) · doi:10.1016/0375-9601(75)90583-6
[71] Kegeles, LS; Cohen, JM, Constructive procedure for perturbations of space-times, Phys. Rev. D, 19, 1641 (1979) · doi:10.1103/PhysRevD.19.1641
[72] Chrzanowski, PL, Vector Potential and Metric Perturbations of a Rotating Black Hole, Phys. Rev. D, 11, 2042 (1975) · doi:10.1103/PhysRevD.11.2042
[73] Wald, RM, Construction of Solutions of Gravitational, Electromagnetic, Or Other Perturbation Equations from Solutions of Decoupled Equations, Phys. Rev. Lett., 41, 203 (1978) · doi:10.1103/PhysRevLett.41.203
[74] T.S. Keidl, J.L. Friedman and A.G. Wiseman, On finding fields and self-force in a gauge appropriate to separable wave equations, Phys. Rev. D75 (2007) 124009 [gr-qc/0611072] [INSPIRE].
[75] Newman, E.; Penrose, R., An Approach to gravitational radiation by a method of spin coefficients, J. Math. Phys., 3, 566 (1962) · Zbl 0108.40905 · doi:10.1063/1.1724257
[76] Kinnersley, W., Type D Vacuum Metrics, J. Math. Phys., 10, 1195 (1969) · Zbl 0182.30202 · doi:10.1063/1.1664958
[77] G. Sárosi, AdS_2holography and the SYK model, PoSModave2017 (2018) 001 [arXiv:1711.08482] [INSPIRE].
[78] Fiola, TM; Preskill, J.; Strominger, A.; Trivedi, SP, Black hole thermodynamics and information loss in two-dimensions, Phys. Rev. D, 50, 3987 (1994) · doi:10.1103/PhysRevD.50.3987
[79] Maldacena, JM; Michelson, J.; Strominger, A., Anti-de Sitter fragmentation, JHEP, 02, 011 (1999) · Zbl 0956.83052 · doi:10.1088/1126-6708/1999/02/011
[80] Kunduri, HK; Lucietti, J.; Reall, HS, Near-horizon symmetries of extremal black holes, Class. Quant. Grav., 24, 4169 (2007) · Zbl 1205.83047 · doi:10.1088/0264-9381/24/16/012
[81] Kunduri, HK; Lucietti, J., Classification of near-horizon geometries of extremal black holes, Living Rev. Rel., 16, 8 (2013) · Zbl 1320.83005 · doi:10.12942/lrr-2013-8
[82] M. Hotta, Asymptotic isometry and two-dimensional anti-de Sitter gravity, gr-qc/9809035 [INSPIRE].
[83] Cadoni, M.; Mignemi, S., Asymptotic symmetries of AdS_2and conformal group in d = 1, Nucl. Phys. B, 557, 165 (1999) · Zbl 0951.83026 · doi:10.1016/S0550-3213(99)00398-3
[84] Navarro-Salas, J.; Navarro, P., AdS_2/CFT_1correspondence and near extremal black hole entropy, Nucl. Phys. B, 579, 250 (2000) · Zbl 0992.83070 · doi:10.1016/S0550-3213(00)00165-6
[85] Plebanski, JF; Demianski, M., Rotating, charged, and uniformly accelerating mass in general relativity, Annals Phys., 98, 98 (1976) · Zbl 0334.53037 · doi:10.1016/0003-4916(76)90240-2
[86] J.B. Griffiths and J. Podolsky, A New look at the Plebanski-Demianski family of solutions, Int. J. Mod. Phys. D15 (2006) 335 [gr-qc/0511091] [INSPIRE]. · Zbl 1101.83012
[87] Ghezelbash, AM, Kerr-Bolt Spacetimes and Kerr/CFT Correspondence, Mod. Phys. Lett. A, 27, 1250046 (2012) · Zbl 1274.83074 · doi:10.1142/S0217732312500460
[88] Astorino, M., CFT Duals for Accelerating Black Holes, Phys. Lett. B, 760, 393 (2016) · Zbl 1398.83037 · doi:10.1016/j.physletb.2016.07.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.