zbMATH — the first resource for mathematics

On secret sharing with nonlinear product reconstruction. (English) Zbl 1397.94113
94A62 Authentication, digital signatures and secret sharing
94A60 Cryptography
Full Text: DOI
[1] N. Bourbaki, Algebra I, Springer-Verlag, New York, 1989.
[2] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant distributed computation, in Proceedings of STOC 1988, ACM Press, New York, 1988, pp. 1–10.
[3] I. Cascudo, H. Chen, R. Cramer, and C. Xing, Asymptotically good ideal linear secret sharing with strong multiplication over any fixed finite field, in Proceedings of the 29th Annual IACR CRYPTO, Santa Barbara, CA, Lecture Notes in Comput. Sci. 5677, Springer-Verlag, New York, 2009, pp. 466–486. · Zbl 1252.94106
[4] I. Cascudo, R. Cramer, and C. Xing, The torsion-limit for algebraic function fields and its application to arithmetic secret sharing, in Proceedings of the of 31st Annual IACR CRYPTO, Santa Barbara, CA, Lecture Notes in Comput. Sci. 6842, Springer-Verlag, New York, 2011, pp. 685–705. · Zbl 1290.94148
[5] D. Chaum, C. Crépeau, and I. Damgaard, Multi-party unconditionally secure protocols, in Proceedings of STOC 1988, ACM Press, New York, 1988, pp. 11–19.
[6] H. Chen and R. Cramer, Algebraic geometric secret sharing schemes and secure multi-party computation over small fields, in Proceedings of the 26th Annual IACR CRYPTO, Santa Barbara, CA, Lecture Notes in Comput. Sci. 4117, Springer-Verlag, New York, 2006, pp. 516–531. · Zbl 1129.94016
[7] H. Chen, R. Cramer, S. Goldwasser, R. de Haan, and V. Vaikuntanathan, Secure computation from random error correcting codes, in Proceedings of the 27th Annual IACR EUROCRYPT, Barcelona, Spain, Lecture Notes in Comput. Sci. 4515, Springer-Verlag, New York, 2007, pp. 291–310. · Zbl 1141.94346
[8] R. Cramer, I. Damg\rard, and U. Maurer, General secure multi-party computation from any linear secret sharing scheme, in Proceedings of 19th Annual IACR EUROCRYPT, Brugge, Belgium, Lecture Notes in Comput. Sci. 1807, Springer-Verlag, New York, 2000, pp. 316–334. · Zbl 1082.94515
[9] J. Dieudonné, La Géométrie des Groupes Classiques, 2nd ed., Springer-Verlag, New York, 1963.
[10] R. H. Dye, On the Arf invariant, J. Algebra, 53 (1978), pp. 36–39. · Zbl 0393.10019
[11] M. K. Franklin and M. Yung, Communication complexity of secure computation (extended abstract), in Proceedings of STOC 1992, ACM Press, New York, 1992, pp. 699–710.
[12] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, Zero-knowledge from secure multiparty computation, in Proceedings of 39th STOC, San Diego, CA, ACM Press, New York, 2007, pp. 21–30. · Zbl 1232.68044
[13] T. Y. Lam, Introduction to Quadratic Forms over Fields. Grad. Stud. Math. 67, AMS, Providence, RI, 2005. · Zbl 1068.11023
[14] S. Roman, Advanced Linear Algebra, 3rd ed., Springer-Verlag, New York, 2008. · Zbl 1132.15002
[15] J.-P. Serre, A course in arithmetic, Grad. Texts in Math. 7, Springer-Verlag, New York, 1973.
[16] A. Shamir, How to share a secret, Comm. ACM, 22 (1979), pp. 612–613. · Zbl 0414.94021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.