×

On the mathematical modelling of tumor-induced angiogenesis. (English) Zbl 1352.92076

Summary: An angiogenic system is taken as an example of extremely complex ones in the field of Life Sciences, from both analytical and computational points of view, due to the strong coupling between the kinetic parameters of the relevant branching – growth – anastomosis stochastic processes of the capillary network, at the microscale, and the family of interacting underlying biochemical fields, at the macroscale. To reduce this complexity, for a conceptual stochastic model we have explored how to take advantage of the system intrinsic multiscale structure: one might describe the stochastic dynamics of the cells at the vessel tip at their natural microscale, whereas the dynamics of the underlying fields is given by a deterministic mean field approximation obtained by an averaging at a suitable mesoscale. But the outcomes of relevant numerical simulations show that the proposed model, in presence of anastomosis, is not self-averaging, so that the “propagation of chaos” assumption cannot be applied to obtain a deterministic mean field approximation. On the other hand we have shown that ensemble averages over many realizations of the stochastic system may better correspond to a deterministic reaction-diffusion system.

MSC:

92C50 Medical applications (general)
60J85 Applications of branching processes
60G57 Random measures
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
65C35 Stochastic particle methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. Ambrosio, On the approximation of mean densities of random closed sets,, Bernoulli, 15, 1222 (2009) · Zbl 1253.60007 · doi:10.3150/09-BEJ186
[2] A. R. A. Anderson, Continuous and discrete mathematical models of tumour-induced angiogenesis,, Bull. Math. Biol., 60, 857 (1998) · Zbl 0923.92011
[3] C. Birdwell, Two-dimensional peptide mapping of fibronectin from bovine aortic endothelial cells and bovine plasma,, Biochem. Biophys. Res. Commun., 97, 574 (1980) · doi:10.1016/0006-291X(80)90302-2
[4] L. L. Bonilla, Hybrid modelling of tumor-induced angiogenesis,, Physical Review E, 90 (2014)
[5] P. Bremaud, <em>Point Processes and Queues. Martingale Dynamics</em>,, Springer-Verlag (1981) · Zbl 0478.60004
[6] M. Burger, On an aggregation model with long and short range interactions,, Nonlinear Anal. Real World Appl., 8, 939 (2007) · Zbl 1188.92040 · doi:10.1016/j.nonrwa.2006.04.002
[7] M. Burger, Mesoscale averaging of nucleation and growth models,, Multiscale Modeling and Simulation, 5, 564 (2006) · Zbl 1118.49023 · doi:10.1137/050626120
[8] V. Capasso, <em>Randomness and Geometric Structures in Biology</em>,, in Pattern Formation in Morphogenesis. Problems and Mathematical Issues (eds. V. Capasso (2013)
[9] V. Capasso, <em>An Introduction to Continuous-time Stochastic Processes</em>,, \(3^{rd}\) edition (2015) · Zbl 1333.60002 · doi:10.1007/978-1-4939-2757-9
[10] V. Capasso, Stochastic modelling of tumour-induced angiogenesis,, J. Math. Biol., 58, 219 (2009) · Zbl 1161.92034 · doi:10.1007/s00285-008-0193-z
[11] V. Capasso, The Role of Stochasticity for a Model of Retinal Angiogenesis,, IMA J. Appl. Math., 77, 729 (2012) · Zbl 1305.92027 · doi:10.1093/imamat/hxs050
[12] V. Capasso, On the geometric densities of random closed sets,, Stoch. Anal. Appl., 26, 784 (2008) · Zbl 1151.60005 · doi:10.1080/07362990802128396
[13] P. F. Carmeliet, Angiogenesis in life, disease and medicine,, Nature, 438, 932 (2005) · doi:10.1038/nature04478
[14] P. Carmeliet, Molecular mechanisms and clinical applications of angiogenesis,, Nature, 473, 298 (2011) · doi:10.1038/nature10144
[15] P. Carmeliet, Common mechanisms of nerve and blood vessel wiring,, Nature, 436, 193 (2005) · doi:10.1038/nature03875
[16] A. Carpio, Well posedness of a kinetic model for angiogenesis,, Nonlinear Analysis; Real World Applications, 30, 184 (2016) · Zbl 1342.35406 · doi:10.1016/j.nonrwa.2016.01.002
[17] N. Champagnat, Invasion and adaptive evolution for individual-based spatially structured populations,, J. Math. Biol., 147 (2007) · Zbl 1129.60080 · doi:10.1007/s00285-007-0072-z
[18] M. Chaplain, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor,, IMA J. Math. Appl. Med. Biol., 10, 149 (1993) · Zbl 0783.92019 · doi:10.1093/imammb/10.3.149
[19] M. Corada, A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability., Blood, 100, 905 (2002) · doi:10.1182/blood.V100.3.905
[20] S. L. Cotter, A stochastic model for early placental development,, J. R. Soc. Interface, 11 (2014) · doi:10.1098/rsif.2014.0149
[21] R. F. Gariano, Retinal angiogenesis in development and disease,, Nature, 438, 960 (2004) · doi:10.1038/nature04482
[22] J. Folkman, Tumour angiogenesis,, Adv. Cancer Res., 19, 331 (1974)
[23] J. W. Gibbs, <em>Elementary Principles of Statistical Mechanics</em>,, Yale Bicentennial Publications (1902) · JFM 44.0789.10 · doi:10.1017/CBO9780511686948
[24] H. A. Harrington, A hybrid model for tumor-induced angiogenesis in the cornea in the presence of inhibitors,, Mathematical and Computer Modelling, 46, 513 (2007) · doi:10.1016/j.mcm.2006.11.034
[25] R. K. Jain, Vessels of death or life,, Sci. Am., 285, 38 (2001) · doi:10.1038/scientificamerican1201-38
[26] S. Karlin, <em>A Second Course in Stochastic Processes</em>,, Academic Press (1981) · Zbl 0469.60001
[27] N. V. Mantzaris, Mathematical modeling of tumor-induced angiogenesis,, J. Math. Biol., 49, 111 (2004) · Zbl 1109.92020 · doi:10.1007/s00285-003-0262-2
[28] D. Morale, An interacting particle system modelling aggregation behavior: From individuals to populations,, J. Math. Biol., 50, 49 (2005) · Zbl 1055.92046 · doi:10.1007/s00285-004-0279-1
[29] K. Oelschläger, On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes,, Probab. Theor. Relat. Fields, 82, 565 (1989) · Zbl 0673.60110 · doi:10.1007/BF00341284
[30] M. J. Plank, Lattice and non-lattice models of tumour angiogenesis,, Bull. Math. Biol., 66, 1785 (2004) · Zbl 1334.92206 · doi:10.1016/j.bulm.2004.04.001
[31] M. Hubbard, The foundations of a unified approach to mathematical modelling of angiogenesis,, Int. J. Adv. Eng. Sci. and Appl. Math., 1, 43 (2009) · doi:10.1007/s12572-009-0004-9
[32] P. E. Protter, <em>Stochastic Integration and Differential Equations</em>,, Second Edition (2004) · Zbl 1041.60005
[33] G. G. Roussas, <em>A Course in Mathematical Statistics</em>,, \(2^{nd}\) edition (1997) · Zbl 0921.62001
[34] M. Scianna, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies,, Prog. Biophys. Mol. Biol., 106, 450 (2011) · doi:10.1016/j.pbiomolbio.2011.01.004
[35] A. Stéphanou, Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis,, Math. Comput. Modelling, 44, 96 (2006) · Zbl 1130.92036 · doi:10.1016/j.mcm.2004.07.021
[36] C. L. Stokes, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis,, J. Theor. Biol., 152, 377 (1991) · doi:10.1016/S0022-5193(05)80201-2
[37] S. Sun, A deterministic model of growth factor-induced angiogenesis,, Bull. Math. Biol., 67, 313 (2005) · Zbl 1334.92047 · doi:10.1016/j.bulm.2004.07.004
[38] S. Sun, A multiscale angiogenesis modeling using mixed finite element methods,, Multiscale Model. Simul., 4, 1137 (2005) · Zbl 1182.92012 · doi:10.1137/050624443
[39] K. R. Swanson, Quantifying the role of angiogenesis in malignant progression of gliomas: In silico modeling integrates imaging and histology,, Cancer Res., 71, 7366 (2011) · doi:10.1158/0008-5472.CAN-11-1399
[40] A. S. Sznitman, Topics in propagation of chaos,, in École d’Été de Probabilités de Saint-Flour XIX-1989, 1464, 165 (1991) · doi:10.1007/BFb0085169
[41] F. Terragni, Stochastic model of tumor-induced angiogenesis: Ensemble averages and deterministic equations,, Physical Review E, 93 (2016) · doi:10.1103/PhysRevE.93.022413
[42] S. Tong, Numerical simulations of angiogenesis in the cornea,, Microvascular Research, 61, 14 (2001) · doi:10.1006/mvre.2000.2282
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.