×

Computational simulation of interactions between SARS coronavirus spike mutants and host species-specific receptors. (English) Zbl 1124.92027

Summary: As a critical adaptive mechanism, amino acid replacements on the severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein could alter the receptor-binding specificity of this envelope glycoprotein and in turn lead to the emergence or reemergence of this viral zoonosis. Based on the X-ray structures of SARS-CoV spike receptor-binding domains (RBD) in complex with its functional receptor (angiotensin-converting enzyme 2, ACE2), we perform computational simulations of interactions between three representative RBD mutants and four host species-specific receptors. The comparisons between computational predictions and experimental evidence validate our structural bioinformatics approaches. The predictions further indicate that some viral prototypes might utilize the rat ACE2 while rats might serve as a vector or reservoir of SARS-CoV.

MSC:

92C50 Medical applications (general)
92C40 Biochemistry, molecular biology
92-08 Computational methods for problems pertaining to biology

Software:

FoldX
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The protein data bank, Nucleic Acids Res., 28, 235-242 (2000)
[2] Consortium, C. S.M. E., Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China, Science, 303, 1666-1669 (2004)
[3] Guan, Y.; Zheng, B. J.; He, Y. Q.; Liu, X. L.; Zhuang, Z. X.; Cheung, C. L.; Luo, S. W.; Li, P. H.; Zhang, L. J.; Guan, Y. J.; Butt, K. M.; Wong, K. L.; Chan, K. W.; Lim, W.; Shortridge, K. F.; Yuen, K. Y.; Peiris, J. S.; Poon, L. L., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China, Science, 302, 276-278 (2003)
[4] Hofmann, H.; Pohlmann, S., Cellular entry of the SARS coronavirus, Trends Microbiol., 12, 466-472 (2004)
[5] Holmes, E. C.; Rambaut, A., Viral evolution and the emergence of SARS coronavirus, Phil. Trans. Roy. Soc. Lond. B: Biol. Sci., 359, 1059-1065 (2004)
[6] Li, W.; Moore, M. J.; Vasilieva, N.; Sui, J.; Wong, S. K.; Berne, M. A.; Somasundaran, M.; Sullivan, J. L.; Luzuriaga, K.; Greenough, T. C.; Choe, H.; Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, 426, 450-454 (2003)
[7] Li, W.; Greenough, T. C.; Moore, M. J.; Vasilieva, N.; Somasundaran, M.; Sullivan, J. L.; Farzan, M.; Choe, H., Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2, J. Virol., 78, 11429-11433 (2004)
[8] Li, F.; Li, W.; Farzan, M.; Harrison, S. C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor, Science, 309, 1864-1868 (2005)
[9] Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.; Epstein, J. H.; Wang, H.; Crameri, G.; Hu, Z.; Zhang, H.; Zhang, J.; McEachern, J.; Field, H.; Daszak, P.; Eaton, B. T.; Zhang, S.; Wang, L. F., Bats are natural reservoirs of SARS-like coronaviruses, Science, 310, 676-679 (2005)
[10] Li, W.; Zhang, C.; Sui, J.; Kuhn, J. H.; Moore, M. J.; Luo, S.; Wong, S. K.; Huang, I. C.; Xu, K.; Vasilieva, N.; Murakami, A.; He, Y.; Marasco, W. A.; Guan, Y.; Choe, H.; Farzan, M., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2, EMBO J., 24, 1634-1643 (2005)
[11] Li, W.; Wong, S. K.; Li, F.; Kuhn, J. H.; Huang, I. C.; Choe, H.; Farzan, M., Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions, J. Virol., 80, 4211-4219 (2006)
[12] Liang, G.; Chen, Q.; Xu, J.; Liu, Y.; Lim, W.; Peiris, J. S.; Anderson, L. J.; Ruan, L.; Li, H.; Kan, B.; Di, B.; Cheng, P.; Chan, K. H.; Erdman, D. D.; Gu, S.; Yan, X.; Liang, W.; Zhou, D.; Haynes, L.; Duan, S.; Zhang, X.; Zheng, H.; Gao, Y.; Tong, S.; Li, D.; Fang, L.; Qin, P.; Xu, W., Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, Guangdong Province, China, Emerg. Infect. Dis., 10, 1774-1781 (2004)
[13] Liu, Y.; Kuhlman, B., RosettaDesign server for protein design, Nucleic Acids Res., 34, W235-W238 (2006)
[14] Marra, M. A.; Jones, S. J.; Astell, C. R.; Holt, R. A.; Brooks-Wilson, A.; Butterfield, Y. S.; Khattra, J.; Asano, J. K.; Barber, S. A.; Chan, S. Y.; Cloutier, A.; Coughlin, S. M.; Freeman, D.; Girn, N.; Griffith, O. L.; Leach, S. R.; Mayo, M.; McDonald, H.; Montgomery, S. B.; Pandoh, P. K.; Petrescu, A. S.; Robertson, A. G.; Schein, J. E.; Siddiqui, A.; Smailus, D. E.; Stott, J. M.; Yang, G. S.; Plummer, F.; Andonov, A.; Artsob, H.; Bastien, N.; Bernard, K.; Booth, T. F.; Bowness, D.; Czub, M.; Drebot, M.; Fernando, L.; Flick, R.; Garbutt, M.; Gray, M.; Grolla, A.; Jones, S.; Feldmann, H.; Meyers, A.; Kabani, A.; Li, Y.; Normand, S.; Stroher, U.; Tipples, G. A.; Tyler, S.; Vogrig, R.; Ward, D.; Watson, B.; Brunham, R. C.; Krajden, M.; Petric, M.; Skowronski, D. M.; Upton, C.; Roper, R. L., The genome sequence of the SARS-associated coronavirus, Science, 300, 1399-1404 (2003)
[15] Ng, S. K., Possible role of an animal vector in the SARS outbreak at Amoy Gardens, Lancet, 362, 570-572 (2003)
[16] Rota, P. A.; Oberste, M. S.; Monroe, S. S.; Nix, W. A.; Campagnoli, R.; Icenogle, J. P.; Penaranda, S.; Bankamp, B.; Maher, K.; Chen, M. H.; Tong, S.; Tamin, A.; Lowe, L.; Frace, M.; DeRisi, J. L.; Chen, Q.; Wang, D.; Erdman, D. D.; Peret, T. C.; Burns, C.; Ksiazek, T. G.; Rollin, P. E.; Sanchez, A.; Liffick, S.; Holloway, B.; Limor, J.; McCaustland, K.; Olsen-Rasmussen, M.; Fouchier, R.; Gunther, S.; Osterhaus, A. D.; Drosten, C.; Pallansch, M. A.; Anderson, L. J.; Bellini, W. J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome, Science, 300, 1394-1399 (2003)
[17] Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.; Serrano, L., The FoldX web server: an online force field 10.1093/nar/gki387, Nucleic Acids Res., 33, W382-W388 (2005)
[18] Sobolev, V.; Eyal, E.; Gerzon, S.; Potapov, V.; Babor, M.; Prilusky, J.; Edelman, M., SPACE: a suite of tools for protein structure prediction and analysis based on complementarity and environment 10.1093/nar/gki398, Nucleic Acids Res., 33, W39-W43 (2005)
[19] Towler, P.; Staker, B.; Prasad, S. G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N. A.; Patane, M. A.; Pantoliano, M. W., ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis, J. Biol. Chem., 279, 17996-18007 (2004)
[20] Wang, L.-F.; Shi, Z.; Zhang, S.; Field, H.; Daszak, P.; Eaton, B. T., Review of bats and SARS, Emerg. Infect. Dis. (2006)
[21] Wong, S. K.; Li, W.; Moore, M. J.; Choe, H.; Farzan, M., A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2, J. Biol. Chem., 279, 3197-3201 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.